Skip to main content
Log in

Influences of life history and environment on lake trout (Salvelinus namaycush) growth and longevity in the Husky Lakes of the Western Canadian Arctic

  • CHARR III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The interaction between an organism and its environment is a major determinant of an individual’s growth rate, longevity, and fitness. Such interactions and resultant variation in growth is particularly prevalent in salmonids where a diversity of life history types and morphotypes can be observed within a single ecosystem. Lake trout, Salvelinus namaycush, are typically considered freshwater residents. However, three life history types within the Husky Lakes estuary and connected lakes, NWT were recently documented, including semi-anadromous, brackish-water resident, and freshwater resident. To understand how use of brackish-water environments influences growth and longevity in lake trout, we assessed otolith increment widths, as a proxy for annual fish growth, and age-at- capture among life history types. Assessment of increments indicated that growth increased in brackish water for semi-anadromous lake trout, and that growth was faster for semi-anadromous and brackish-water residents than for freshwater residents (70 mm larger on average at age 15). In addition, age at capture was significantly older in brackish-water residents (3.8 years older) when compared to the other life histories. Together these results indicate that life in brackish water can have positive effects on growth and longevity for lake trout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bystriansky, J. S., J. G. Richards, P. M. Schulte & J. S. Ballantyne, 2006. Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. Journal of Experimental Biology 209: 1848–1858. https://doi.org/10.1242/jeb.02188.

    Article  CAS  PubMed  Google Scholar 

  • Campana, S. E., 1990. How reliable are growth back-calculations based on otoliths? Canadian Journal of Fisheries and Aquatic Sciences 47: 2219–2227.

    Article  Google Scholar 

  • Casselman, J. M. & J. M. Gunn, 1992. Dynamics in year-class strength, growth, and calcified-structure size of native lake trout (Salvelinus namaycush) exposed to moderate acidification and whole-lake neutralization. Canadian Journal of Fisheries and Aquatic Sciences 49: 102–113.

    Article  CAS  Google Scholar 

  • Chapman, B. B., C. Brönmark, J.-Å. Nilsson & L.-A. Hansson, 2011. The ecology and evolution of partial migration. Oikos 120: 1764–1775. https://doi.org/10.1111/j.1600-0706.2011.20131.x.

    Article  Google Scholar 

  • Chapman, B. B., K. Hulthén, J. Brodersen, P. A. Nilsson, C. Skov, L.-A. Hansson & C. Brönmark, 2012a. Partial migration in fishes: causes and consequences. Journal of Fish Biology 81: 456–478. https://doi.org/10.1111/j.1095-8649.2012.03342.x.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, B. B., C. Skov, K. Hulthén, J. Brodersen, P. A. Nilsson, L.-A. Hansson & C. Brönmark, 2012b. Partial migration in fishes: definitions, methodologies and taxonomic distribution. Journal of Fish Biology. 81: 479–499. https://doi.org/10.1111/j.1095-8649.2012.03349.x.

    Article  CAS  PubMed  Google Scholar 

  • Chavarie, L., K. Howland, P. Venturelli, B. C. Kissinger, R. Tallman & W. Tonn, 2016. Life-history variation among four shallow-water morphotypes of lake trout from Great Bear Lake, Canada. Journal of Great Lakes Research 42(2): 193–203. https://doi.org/10.1016/j.jglr.2015.07.006.

    Article  Google Scholar 

  • Eshenroder, R. L., E. J. Crossman, G. K. Meffe, C. H. Olver & E. P. Pister, 1995. Lake trout rehabilitation in the Great Lakes: an evolutionary, ecological, and ethical perspective. Journal of Great Lakes Research 21: 518–529.

    Article  Google Scholar 

  • Eliason, E. J. & A. P. Farrell, 2016. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet. Journal of Fish Biology 88: 359–388. https://doi.org/10.1111/jfb.12790.

    Article  CAS  PubMed  Google Scholar 

  • Finstad, A. G. & C. L. Hein, 2012. Migrate or stay: terrestrial primary productivity and climate drive anadromy in Arctic char. Global Change Biology 18: 2487–2497. https://doi.org/10.1111/j.1365-2486.2012.02717.x.

    Article  Google Scholar 

  • Gross, M. R., 1987. Evolution of diadromy in fishes. American Fisheries Society Symposium 1: 14–25.

    Google Scholar 

  • Hansen, M. J., N. A. Nate, C. C. Krueger, M. S. Zimmerman, H. G. Kruckman & W. W. Taylor, 2012. Age, growth, survival, and maturity of lake trout morphotypes in Lake Mistassini, Quebec. Transactions of the American Fisheries Society. 141: 1492–1503. https://doi.org/10.1080/00028487.2012.711263.

    Article  Google Scholar 

  • Helle, J. H., R. S. Williamson & J. E. Bailey, 1964. Intertidal Ecology and Life History of Pink Salmon at Olsen Creek, Prince Williams Sound, Alaska. U. S. Fish Wildlife Service. Special Scientific Report. 483 iii-26.

  • Hendry, A. P., T. Bohlin, B. Jonsson & O. K. Berg, 2004. To sea or not to sea? Anadromy versus non-Andromy in salmonids. In Stearns, S. C., & A. P. Hendry (eds), Evolution illuminated, Salmon and their relatives. 92–126.

  • Himberg, K. J. M. & H. Lehtonen, 1995. Systematics and nomenclature of coregonid fishes, particularly in Northwest Europe. Archiv fur Hybrobiologie Special Issue Advanced Limnology 46: 36–47.

    Google Scholar 

  • Hiroi, J. & S. McCormick, 2007. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. Journal of Experimental Biology 210: 1015–1024. https://doi.org/10.1242/jeb.002030.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson, B. & N. Jonsson, 1993. Partial migration: niche shift versus sexual maturation in fishes. Reviews in Fish Biology and Fisheries 3: 348–365.

    Article  Google Scholar 

  • Jonsson, B., J. H. L’Abée-Lund, T. G. Heggberget, A. J. Jensen, B. O. Johnsen, T. F. Næsje & L. M. Sættem, 1991. Longevity, body size, and growth in anadromous brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatatic Sciences 48: 1838–1845. https://doi.org/10.1139/f91-217.

    Article  Google Scholar 

  • Kendall, N. W., J. R. McMillan, M. R. Sloat, T. W. Buehrens, T. P. Quinn, G. R. Pess, K. V. Kuzishchin, M. M. McClure & R. W. Zabel, 2015. Anadromy and residency in steelhead and rainbow trout (Oncorhynchus mykiss): a review of the processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 342: 319–342. https://doi.org/10.1139/cjfas-2014-0192.

    Article  CAS  Google Scholar 

  • Kissinger, B. C., N. Gantner, W. G. Anderson, D. M. Gillis, N. M. Halden, L. A. Harwood & J. D. Reist, 2016. Brackish-water residency and semi-anadromy in Arctic lake trout (Salvelinus namaycush) inferred from otolith microchemistry. Journal of Great Lakes Research 42: 267–275. https://doi.org/10.1016/j.jglr.2015.05.016.

    Article  CAS  Google Scholar 

  • Kissinger, B. C., J. Bystriansky, N. Czehryn, E. C. Enders, J. Treberg, J. R. Reist, E. Whitmore & W. G. Anderson, 2017. Environment-phenotype interactions: influences of brackish-water rearing on lake trout (Salvelinus namaycush) physiology. Environmental Biology of Fishes 100: 797–814.

    Article  Google Scholar 

  • Kissinger, B. C., L. N. Harris, D. Swainson, W. G. Anderson, M. F. Docker & J.D. Reist, 2018. Fine-Scale Population Structure in Lake Trout (Salvelinus namaycush) Influenced by Life History Variation in the Husky Lakes Drainage Basin, Northwest Territories, Canada. In press.

  • Kuznetsova, A., P. B. Brockhoff & R. H. Christensen, 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82(13): 1–26.

    Article  Google Scholar 

  • McCormick, S. D. & R. L. Saunders, 1987. Preparatory physiological adaptations for marine life of Salmonids: osmoregulation, growth, and metabolism. American Fisheries Society Symposium 1: 211–229.

    Google Scholar 

  • Morgan, D. & G. K. Iwama, 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall Chinook Salmon (Oncorhynchus tshawytcha). Canadian Journal of Fisheries and Aquatic Sciences 48: 2083–2094.

    Article  Google Scholar 

  • Morgan, D. & G. K. Iwama, 1998. Salinity effects on oxygen consumption, gill Na + , K + -ATPase and ion regulation in juvenile coho salmon. Journal of Fish Biology. 53: 1110–1119. https://doi.org/10.1006/jfbi.1998.0780.

    Article  CAS  Google Scholar 

  • Papakostas, S., A. Vasemägi, J.-P. Vähä, M. Himberg, L. Peil & C. R. Primmer, 2012. A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (Coregonus lavaretus). Molecular Ecology 21: 3516–3530. https://doi.org/10.1111/j.1365-294X.2012.05553.x.

    Article  CAS  PubMed  Google Scholar 

  • Rideout, R. M., G. A. Rose & M. P. M. Burton, 2005. Skipped spawning in female iteroparous fishes. Fish Fish 6: 50–72.

    Article  Google Scholar 

  • Roux, M.-J., P. Sparling, J. Felix & L. A. Harwood, 2014. Ecological assessment of Husky Lakes and Sitidgi Lake, Northwest Territories, 2000-2004. Canadian Technical Report of Fisheries and Aquatic Sciences 3071: ix–123.

    Google Scholar 

  • Roux, M. J., L. A. Harwood, X. Zhu & P. Sparling, 2016. Early summer near-shore fish assemblage and environmental correlates in an Arctic estuary. Journal of Great Lakes Research 42: 256–266. https://doi.org/10.1016/j.jglr.2015.04.005.

    Article  Google Scholar 

  • Swanson, H. K., K. A. Kidd, J. A. Babaluk, R. J. Wastle, P. P. Yang, N. M. Halden & J. D. Reist, 2010. Anadromy in Arctic populations of lake trout (Salvelinus namaycush): otolith microchemistry, stable isotopes, and comparisons with Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 67: 842–853.

    Article  CAS  Google Scholar 

  • Scott, W. B. & E. J. Crossman, 1973. Freshwater Fishes of Canada. The Bryant Press Limited, Ottawa.

    Google Scholar 

  • Weisberg, S., G. Spangler & L. S. Richmond, 2010. Mixed effects models for fish growth. Canadian Journal of Fisheries and Aquatic Sciences. 67: 269–277. https://doi.org/10.1139/F09-181.

    Article  Google Scholar 

  • Zimmerman, C. E., 2005. Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids. Canadian Journal of Fisheries and Aquatic Sciences. 62: 88–97. https://doi.org/10.1139/F04-182.

    Article  CAS  Google Scholar 

  • Zimmerman, M. S. & C. C. Krueger, 2009. An ecosystem perspective on re-establishing native deep water fishes in the Laurentian Great Lakes. North American Journal of Fisheries Management 29: 1352–1371. https://doi.org/10.1577/M08-194.1.

    Article  Google Scholar 

  • Zimmerman, M. S., C. C. Krueger & R. L. Eshenroder, 2006. Phenotypic diversity of lake trout in Great Slave Lake: differences in morphology, buoyancy, and habitat depth. Transaction of the American Fisheries Society 135: 1056–1067. https://doi.org/10.1577/T05-237.1.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Leno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. In Gail, M., K. Krickeberg, J. M. Samet, A. Tsiatis & W. Wong (eds), Journal of Chemical Information and Modeling. Springer, New York. https://doi.org/10.1017/cbo9781107415324.004.

    Chapter  Google Scholar 

Download references

Acknowledgements

Funding and logistical support for this project was provided by Fisheries and Oceans Canada through the Inuvialuit Final Agreement Funding, University of Manitoba (University of Manitoba Graduate Student Fellowship, Faculty of Science Graduate Student Scholarship, H. E. Welch Memorial Graduate Scholarship, International Graduate Student Scholarship) and the Polar Continental Shelf Project (Project# 10414). Project support and approval was given by the Inuvik, Tuktoyaktuk, and Aklavik Hunters and Trappers Committees along with Fisheries Joint Management Committee. Permits issued for these surveys include: the Department of Fisheries and Oceans Canada (DFO) License to Fish for Scientific Purposes (S-14-15-3004 and S-15-16-3007) and DFO Animal Use Protocol (2014-015 and 2015-010). Furthermore, I sought and received project approvals from local Hunters and Trappers Committees (Inuvik, Aklavik and Tuktoyaktuk) in addition to the Fisheries Joint Management Committee and Gwich’in Renewable Resource Board. Special thanks to Kristin Hynes, Danny Swainson, Ellen Lea, Angus Alunik, and Sarah Buckle for assistance with field preparation and logistics and Kris Maier for sample donations and assistance with GRRB approval applications. The Husky Lakes lake trout monitoring program was assisted by William Day, Joseph Felix, Abraham Klenkenberg, Wayne Thrasher, Tony Stefure, Desmond Nasogaluak, and John Noksana (Sr.). Summer lake sampling assistance was provided by Peter Archie and William Day. Guidance with otolith preparation and techniques was provided by Tracey Loewen, Rick Wastle, and Panseok Yang. Additional support with logistical planning was provided by Neil Mochnacz and Karen Dunmall and assistance with manuscript editing by Amy Flasko.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin C. Kissinger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: C. E. Adams, C. R. Bronte, M. J. Hansen, R. Knudsen & M. Power / Charr Biology, Ecology and Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kissinger, B.C., Gillis, D.M., Anderson, W.G. et al. Influences of life history and environment on lake trout (Salvelinus namaycush) growth and longevity in the Husky Lakes of the Western Canadian Arctic. Hydrobiologia 840, 173–188 (2019). https://doi.org/10.1007/s10750-019-3960-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3960-5

Keywords

Navigation