Skip to main content
Log in

Impact of eutrophication on root morphological and topological performance in free-floating invasive and native plant species

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Three free-floating species that normally co-occur in the natural waters of southern China were studied—two globally introduced invasive species, Eichhornia crassipes and Pistia stratiotes, and a native counterpart, Hydrocharis dubia. The responses of the three species to different phosphorus and nitrogen levels were determined using root morphological parameters and topological indices. The results showed that P concentration levels had a significant effect on all of the root traits, except for the shoot/root ratio of P. stratiotes, whereas nitrogen had less impacts on the root traits. The root parameters consisting of lateral root number, root altitude, root length, total root length, root area, total root area, relative growth rate and root relative growth rate of E. crassipes were the highest among the three species. We found that the root branching of E. crassipes can be considered as a peculiar poly-herringbone branching system according to a new root topological structure model. The predominant root growth traits and root branching structure of E. crassipes and P. stratiotes help to explain their high absorption ability and fast growth, so the spread of these invasive species may be exacerbated as eutrophication intensifies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adebayo, A., E. Briski, O. Kalaci, M. Hernandez, S. Ghabooli, B. Beric, F. Chan, A. Zhan, E. Fifield, T. Leadley & H. MacIsaac, 2011. Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) in the Great Lakes: playing with fire? Aquatic Invasions 6: 91–96.

    Article  Google Scholar 

  • Bai, X., K. Chen, H. Zhao & X. Chen, 2015. Impact of water depth and sediment type on root morphology of the submerged plant Vallisneria natans. Journal of Freshwater Ecology 30: 75–84.

    Article  CAS  Google Scholar 

  • Beklioglu, M., M. Meerfhoff, M. Søndergaard & E. Jeppesen, 2013. Eutrophication and restoration of shallow lakes from a cold temperate to a warm mediterranean and a (sub) tropical climate. In Ansari, A. A., S. S. Gill, G. R. Lanza & W. Rast (eds), Eutrophication: Causes, Consequences and Control. Springer, Dordrecht: 103.

    Google Scholar 

  • Berntson, G. M., 1995. The characterization of topology: a comparison of four topological indices for rooted binary trees. Journal of Theoretical Biology 177: 271–281.

    Article  Google Scholar 

  • Bouma, T. J., K. L. Nielsen, J. Van Hal & B. Koutstaal, 2001. Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology 15: 360–369.

    Article  Google Scholar 

  • Brundu, G., 2015. Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiologia 746: 61–79.

    Article  Google Scholar 

  • Buller, L. S., I. Bergier, E. Ortega & S. M. Salis, 2013. Dynamic energy valuation of water hyacinth biomass in wetlands: an ecological approach. Journal of Cleaner Production 54: 177–187.

    Article  Google Scholar 

  • Bulut, Y. & H. Aydın, 2006. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194: 259–267.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., 2005. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the National Academy of Sciences 102: 10002–10005.

    Article  CAS  Google Scholar 

  • Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.

    Article  Google Scholar 

  • Coetzee, J. A. & M. P. Hill, 2012. The role of eutrophication in the biological control of water hyacinth, Eichhornia crassipes, in South Africa. Biocontrol 57: 247–261.

    Article  Google Scholar 

  • Comas, L. H. & D. M. Eissenstat, 2004. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology 18: 388–397.

    Article  Google Scholar 

  • Csathó, P., I. Sisák, L. Radimszky, S. Lushaj, H. Spiegel, M. T. Nikolova, N. Nikolov, P. Čermák, J. Klir, A. Astover, A. Karklins, S. Lazauskas, J. Kopiński, C. Hera, E. Dumitru, M. Manojlovic, D. Bogdanović, S. Torma, M. Leskošek & A. Khristenko, 2007. Agriculture as a source of phosphorus causing eutrophication in Central and Eastern Europe. Soil Use and Management 23: 36–56.

    Article  Google Scholar 

  • Dannowski, M. & A. Block, 2005. Fractal geometry and root system structures of heterogeneous plant communities. Plant and Soil 272: 61–76.

    Article  CAS  Google Scholar 

  • Dawson, W., M. Fischer & M. van Kleunen, 2011. The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Global Ecology and Biogeography 20: 299–306.

    Article  Google Scholar 

  • Eid, E. M. & K. H. Shaltout, 2017. Growth dynamics of water hyacinth (Eichhornia crassipes): a modeling approach. Rendiconti Lincei 28: 169–181.

    Article  Google Scholar 

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  PubMed  Google Scholar 

  • Engelhardt, K. A. M., 2011. Eutrophication, aquatic. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley and Los Angeles: 209–210.

    Google Scholar 

  • Finlay, J. C., G. E. Small & R. W. Sterner, 2013. Human influences on nitrogen removal in lakes. Science 342: 247–250.

    Article  CAS  PubMed  Google Scholar 

  • Fitter, A. H., 1986. The topology and geometry of plant root systems: influence of watering rate on root system topology in Trifolium pratese. Annals of Botany 58: 91–101.

    Article  Google Scholar 

  • Fitter, A. H., 1987. An architectural approach to comparative ecology of plant root systems. New Phytologist 106: 61–77.

    Article  Google Scholar 

  • Fitter, A. H., 2002. Characteristics and functions of root systems. In Waisel, Y., A. Eshel & U. Kafkafi (eds), Plant Roots: The Hidden Half. CRC Press, New York: 15–32.

    Chapter  Google Scholar 

  • Fitter, A. H. & T. R. Stickland, 1991. Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytologist 118: 383–389.

    Article  Google Scholar 

  • Fitter, A. H., T. R. Stickland, M. L. Harvey & G. W. Wilson, 1991. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytologist 118: 375–382.

    Article  Google Scholar 

  • Gamage, N. P. D. & T. Asaeda, 2004. Population dynamics of water hyacinth (Eichhornia crassipes). Research report of the Research and Education Center for Inlandwater Environment Shinshu University 2: 35–40.

  • Glass, A. D. M., 2002. Nutrient absorption by plant roots: regulation of uptake to match plant demand. In Waisel, Y., A. Eshel & U. Kafkafi (eds), Plant Roots: The Hidden Half. CRC Press, New York: 571–586.

    Chapter  Google Scholar 

  • Glimskär, A., 2000. Estimates of root system topology of five plant species grown at steady-state nutrition. Plant and Soil 227: 249–256.

    Article  Google Scholar 

  • Grantz, E. M., B. E. Haggard & J. T. Scott, 2014. Stoichiometric imbalance in rates of nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency in highly-productive reservoirs. Limnology and Oceanography 59: 2203–2216.

    Article  CAS  Google Scholar 

  • He, H., H. Gao, G. Chen, H. Li, H. Lin & Z. Shu, 2013. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues. Environmental Science and Pollution Research 20: 7301–7308.

    Article  CAS  PubMed  Google Scholar 

  • Heathwaite, A. L., 2010. Multiple stressors on water availability at global to catchment scales: understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshwater Biology 55: 241–257.

    Article  Google Scholar 

  • Henry-Silva, G. G., A. F. M. Camargo & M. M. Pezzato, 2008. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia 610: 153–160.

    Article  CAS  Google Scholar 

  • Hodge, A., 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162: 9–24.

    Article  Google Scholar 

  • Huang, J., C. Xu, B. G. Ridoutt, X. Wang & P. Ren, 2017. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production 159: 171–179.

    Article  Google Scholar 

  • Hussner, A., I. Stiers, M. J. J. M. Verhofstad, E. S. Bakker, B. M. C. Grutters, J. Haury, J. L. C. H. van Valkenburg, G. Brundu, J. Newman, J. S. Clayton, L. W. J. Anderson & D. Hofstra, 2017. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquatic Botany 136: 112–137.

    Article  Google Scholar 

  • Ismail, Z., S. Z. Othman, K. H. Law, A. H. Sulaiman & R. Hashim, 2015. Comparative performance of water hyacinth (Eichhornia crassipes) and water lettuce (Pista stratiotes) in preventing nutrients build-up in municipal wastewater. Clean: Soil, Air, Water 43: 521–531.

    CAS  Google Scholar 

  • IUCN, 2013. Global Invasive Species Database. http://www.iucngisd.org/gisd/100_worst.php.

  • Janssen, A. B. G., V. C. L. de Jager, J. H. Janse, X. Kong, S. Liu, Q. Ye & W. M. Mooij, 2017. Spatial identification of critical nutrient loads of large shallow lakes: Implications for Lake Taihu (China). Water Research 119: 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen, E., M. Sondergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willen & M. Winder, 2005. Lake responses to reduced nutrient loading: an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Ji, N., S. Wang & L. Zhang, 2017. Characteristics of dissolved organic phosphorus inputs to freshwater lakes: a case study of Lake Erhai, southwest China. Science of the Total Environment 601–602: 1544–1555.

    Article  CAS  PubMed  Google Scholar 

  • Laboski, C. A. M., R. H. Dowdy, R. R. Allmaras & J. A. Lamb, 1998. Soil strength and water content influences on corn root distribution in a sandy soil. Plant and Soil 203: 239–247.

    Article  CAS  Google Scholar 

  • Le, C., Y. Zha, Y. Li, D. Sun, H. Lu & B. Yin, 2010. Eutrophication of lake waters in China: cost, causes, and control. Environmental Management 45: 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Low, K. S., C. K. Lee & K. K. Tan, 1995. Biosorption of basic dyes by water hyacinth roots. Bioresource Technology 52: 79–83.

    Article  CAS  Google Scholar 

  • McCully, M., 1995. How do real roots work? Some new views of root structure. Plant Physiology 109: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelan, T. S., M. S. Dainez Filho & S. M. Thomaz, 2018. Aquatic macrophyte mats as dispersers of one invasive plant species. Brazilian Journal of Biology 78: 169–171.

    Article  CAS  Google Scholar 

  • Mishra, S. & A. Maiti, 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environmental Science and Pollution Research 24: 7921–7937.

    Article  CAS  PubMed  Google Scholar 

  • OECD., 1982. Eutrophication of Waters, Monitoring, Assessment and Control. Final Report, OECD Cooperative Program on Monitoring of Inland Waters (Eutrophication Control), Environment Di- rectorate, OECD, Paris.

  • Oppelt, A. L., W. Kurth & D. L. Godbold, 2001. Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiology 21: 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., A. M. Villamagna & B. Li, 2012. Eichhornia crassipes Mart. (Solms-Laubach) (water hyacinth). In Francis, R. A. (ed.), A Handbook of Global Freshwater invasive Species. Taylor & Francis Group, London and New York: 47–56.

    Google Scholar 

  • Qiu, D., Z. Wu, B. Liu, J. Deng, G. Fu & F. He, 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecological Engineering 18: 147–156.

    Article  Google Scholar 

  • Qin, B., G. Gao, G. Zhu, Y. Zhang, Y. Song, X. Tang, H. Xu & J. Deng, 2013. Lake eutrophication and its ecosystem response. Chinese Science Bulletin 58: 961–970.

    Article  CAS  Google Scholar 

  • Qin, H., Z. Zhang, M. Liu, H. Liu, Y. Wang, X. Wen, Y. Zhang & S. Yan, 2016. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecological Engineering 95: 753–762.

    Article  Google Scholar 

  • Quilliam, R. S., M. A. van Niekerk, D. R. Chadwick, P. Cross, N. Hanley, D. L. Jones, A. J. A. Vinten, N. Willby & D. M. Oliver, 2015. Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? Journal of Environmental Management 152: 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Ru, J., M. Liu, X. Cheng & C. Wang, 2015. The morphological study of the fruit, seed and seedling of Hydrocharis dubia (Hydrocharitaceae). Pakistan Journal of Botany 47: 1467–1472.

    CAS  Google Scholar 

  • Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.

    Article  Google Scholar 

  • Schindler, D. W., 2012. The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B 279: 4322–4333.

    Article  CAS  PubMed  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.

    Article  Google Scholar 

  • Smart, J. S., 1978. The analysis of drainage network composition. Earth Surface Processes and Landforms 3: 129–170.

    Article  Google Scholar 

  • Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24: 201–207.

    Article  Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    Article  CAS  PubMed  Google Scholar 

  • Tamada, K., K. Itoh, Y. Uchida, S. Higuchi, D. Sasayama & T. Azuma, 2015. Relationship between the temperature and the overwintering of water lettuce (Pistia stratiotes) at Kowataike, a branch of Yodogawa River, Japan. Weed Biology and Management 15: 20–26.

    Article  Google Scholar 

  • Taub, D. R. & D. Goldberg, 1996. Root system topology of plants from habitats differing in soil resource availability. Functional Ecology 10: 258–264.

    Article  Google Scholar 

  • Tsuchiya, T., 1989. Growth and biomass turnover of Hydrocharis dubia L. cultured under different nutrient conditions. Ecological Research 4: 157–166.

    Article  Google Scholar 

  • van Kleunen, M., E. Weber & M. Fischer, 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13: 235–245.

    Article  PubMed  Google Scholar 

  • van Pelt, J. & R. W. H. Verwer, 1983. The exact probabilities of branching patterns under terminal and segmental growth hypotheses. Bulletin of Mathematical Biology 45: 269–285.

    Article  PubMed  Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Article  Google Scholar 

  • Wang, H., Q. Wang, P. Bowler & W. Xiong, 2016. Invasive aquatic plants in China. Aquatic Invasions 11: 1–9.

    Article  Google Scholar 

  • Wang, T., J. Hu, C. Liu & D. Yu, 2017. Soil type can determine invasion success of Eichhornia crassipes. Hydrobiologia 788: 281–291.

    Article  Google Scholar 

  • Waranusantigul, P., P. Pokethitiyook, M. Kruatrachue & E. S. Upatham, 2003. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution 125: 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Werner, C. & J. S. Smart, 1973. Some new methods of topologic classification of channel networks. Geographical Analysis 5: 271–295.

    Article  Google Scholar 

  • Wilson, J. R., N. Holst & M. Rees, 2005. Determinants and patterns of population growth in water hyacinth. Aquatic Botany 81: 51–67.

    Article  Google Scholar 

  • Xia, C., D. Yu, Z. Wang & D. Xie, 2014. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China. Ecological Engineering 70: 406–413.

    Article  Google Scholar 

  • Xie, Y. & D. Yu, 2003. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquatic Botany 75: 311–321.

    Article  Google Scholar 

  • Xu, H., H. W. Paerl, B. Qin, G. Zhu, N. S. Hall & Y. Wu, 2015. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environmental Science & Technology 49: 1051–1059.

    Article  CAS  Google Scholar 

  • Yan, Z., W. Han, J. Peñuelas, J. Sardans, J. J. Elser, E. Du, P. B. Reich & J. Fang, 2016. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters 19: 1237–1246.

    Article  PubMed  Google Scholar 

  • You, W., D. Yu, D. Xie, L. Yu, W. Xiong & C. Han, 2014. Responses of the invasive aquatic plant water hyacinth to altered nutrient levels under experimental warming in China. Aquatic Botany 119: 51–56.

    Article  CAS  Google Scholar 

  • Zhang, Y., D. Zhang & S. C. H. Barrett, 2010. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology 19: 1774–1786.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., E. Jeppesen, X. Liu, B. Qin, K. Shi, Y. Zhou, S. M. Thomaz & J. Deng, 2017. Global loss of aquatic vegetation in lakes. Earth-Science Reviews 173: 259–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Special Foundation of the National Science and Technology Basic Research Program (2013FY112300), the Major Science and Technology Program for Water Pollution Control and Treatment (2015ZX07503-005 and 2017ZX07203-005), and the Introducing Talent Starting Project (NIGLAS2018QD01) of the Nanjing Institute of Geography and Limnology (NIGLAS), Chinese Academy of Sciences. We are grateful to reviewers for providing helpful feedback on our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Liu.

Additional information

Handling editor: Sidinei Magela Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Xu, X., Liu, S. et al. Impact of eutrophication on root morphological and topological performance in free-floating invasive and native plant species. Hydrobiologia 836, 123–139 (2019). https://doi.org/10.1007/s10750-019-3946-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3946-3

Keywords

Navigation