Skip to main content
Log in

The impact of phenology on the interaction between a predaceous aquatic insect and larval amphibians in seasonal ponds

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phenology has an important effect on the life strategies of species that live in temporary waters. Predaceous aquatic insects are key components of communities associated with seasonal ponds. Since the life cycles of these predators and their prey are unusual in that they occur at different moments of the pond hydroperiod, differences in temporal overlap could change the strength of their interactions. This study analyzed the phenology of the giant water bug Belostoma bifoveolatum and its prey. Breeding phenology, nymph population, and prey phenology were studied extensively in three wetlands during the spring season. Experimental trials were carried out to evaluate prey consumption and prey preference. The results showed a strong overlap in phenology between the water bug and the Pleurodema thaul frog. The timing of tadpole and water bug nymph hatching could ensure high survival levels of the early immature stages of this insect. As giant water bugs develop, their prey selectivity experiences a shift—older nymphs and adults having a higher impact on tadpoles. The fluctuating climate of the Patagonian region probably influences the phenology of predator–prey assemblages in seasonal communities, and may have the potential to drive feeding performance and the strength of interspecific interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aditya, G., S. Bhattacharyya, N. Kundu, G. K. Saha & S. K. Raut, 2004. Predatory efficiency of the water bug Sphaerodema annulatum on mosquito larvae (Culex quinquefasciatus) and its effect on adult emergence. Bioresearch Technology 95: 169–172.

    Article  CAS  Google Scholar 

  • Aditya, G., S. Bhattacharyya, N. Kundu & G. K. Saha, 2005. Frequency dependent prey selection of predacious water bugs on Armigeres subalbatus immature. Journal of Vector Borne Disease. 42: 9–14.

    CAS  Google Scholar 

  • Alford, R. A., 1989. Variation in predator phenology affects predator performance and prey community composition. Ecology 70: 206–219.

    Article  Google Scholar 

  • Armúa De Reyes, C. & A. L. Estévez, 2005. Diversidad de Heterópteros acuáticos, conespecial referencia a las Belostoma (Heteróptera: Belostomatidae). INSUGEO Miscelánea 14: 281–292.

    Google Scholar 

  • Benard, M. F., 2015. Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing. Global Change Biology 21: 1058–1065.

    Article  Google Scholar 

  • Blaustein, A. R., S. C. Walls, B. A. Bancroft, J. J. Lawler, C. L. Searle & S. S. Gervast, 2010. Direct and indirect effects of climate change on amphibian populations. Diversity 2(2): 281–313.

    Article  Google Scholar 

  • Calhoun, A. J. K., D. M. Mushet, K. P. Bell, D. Boix, J. A. Fitsimons & F. Isselin-Nondedeu, 2017. Temporary wetlands: challenges and solutions to conserving a “disappearing” ecosystem. Biological Conservation 211: 3–11.

    Article  Google Scholar 

  • Cayrou, J. & R. Cereghino, 2005. Life-cycle phenology of some aquatic insects: implications for pond conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 559–571.

    Article  Google Scholar 

  • Chesson, J., 1978. Measuring preference in selective predation. Ecology 59: 211–215.

    Article  Google Scholar 

  • Cloarec, A., 1990. Variations of predatory tactics of a water bug during development. Ethology 86: 33–46.

    Article  Google Scholar 

  • Faúndez, E. I. & M. A. Carvajal, 2017. Notas sobre Belostomatidae (Hemiptera: Heteroptera) en Chile. Revista Chilena de Entomología 43: 75–80.

    Google Scholar 

  • Foltz, S. J. & S. I. Dodson, 2009. Aquatic Hemiptera community structure in storm water retention ponds: a watershed land cover approach. Hydrobiologia 1: 49–62.

    Article  Google Scholar 

  • Formanowicz, D. R., 1984. Foraging tactics of an aquatic insect: partial consumption of prey. Animal Behavior 32: 774–781.

    Article  Google Scholar 

  • Formanowicz Jr., D. R., 1986. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica 42: 367–373.

    Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Hampton, S. E., 2004. Habitat overlap of enemies: temporal patterns and the role of spatial complexity. Oecologia 138: 475–484.

    Article  Google Scholar 

  • Heckman, C. W., 2011. Encyclopedia of South American aquatic insects: Hemiptera-Heteroptera. Springer, London: 679.

    Book  Google Scholar 

  • Hirai, T. & K. Hidaka, 2002. Anuran-dependent predation by the giant water bug, Lethocerus deyrollei (Hemiptera: Belostomatidae), in rice fields of Japan. Ecological Research 17: 655–661.

    Article  Google Scholar 

  • Jara, F. G., 2008. Tadpole-odonate larvae interactions: influence of body size and diel rhythm. Aquatic Ecology 42: 503–509.

    Article  Google Scholar 

  • Jara, F. G., 2014. Trophic ontogenetic shifts of the dragonfly Rhionaeschna variegata: the role of larvae as predators and prey in Andean wetland communities. Annales de Limnologie - International Journal of Limnology 50: 173–184.

    Article  Google Scholar 

  • Jara, F. G., 2016. Predator-prey body size relationship in temporary wetlands: effect of predatory insects on prey size spectra and survival. Annales de Limnologie - International Journal of Limnology 52: 205–216.

    Article  Google Scholar 

  • Jara, F. G. & M. G. Perotti, 2010. Risk of predation and behavioral response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644: 313–324. https://doi.org/10.1007/s10750-010-0196-9

    Article  Google Scholar 

  • Jara, F. G. & M. G. Perotti, 2018. The life cycle of the giant water bug of northwestern Patagonian wetlands: the effect of hydroperiod and temperature regime. Invertebrate Biology 137: 105–115.

    Article  Google Scholar 

  • Jara, F. G., C. A. Úbeda & M. G. Perotti, 2013. Predatory insects in lentic freshwater habitats from northwest Patagonia: richness and phenology. Journal of Natural History 47: 2749–2768.

    Article  Google Scholar 

  • Kehr, A. I. & J. A. Schnack, 1991. Predator-prey relationship between giant water bugs (Belostoma oxyurum) and larval anurans (Bufo arenarum). Alytes 9: 61–69.

    Google Scholar 

  • Kingsolver, J. G., H. A. Woods, L. B. Buckley, K. A. Potter, H. J. MacLean & J. K. Higgins, 2011. Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology 51: 719–732.

    Article  Google Scholar 

  • Lawler, S. P. & P. J. Morin, 1993. Temporal overlap, competition, and priority effects in larval anurans. Ecology 74: 174–182.

    Article  Google Scholar 

  • Lopatina, E. B., D. A. Kutcherov & S. V. Balashov, 2014. The influence of diet on the duration and thermal sensitivity of development in the linden bug Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae). Physiological Entomology 39: 208–216.

    Article  Google Scholar 

  • Manly, B. F. J., 1974. A model for certain types of selection experiments. Biometrics 30: 281–294.

    Article  Google Scholar 

  • McCauley, S. J., J. I. Hammond, D. N. Frances & K. E. Mabry, 2015. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata). Ecological Entomology 40: 211–220.

    Article  Google Scholar 

  • Melo, M. C., 2009. Biodiversity of aquatic and semiaquatic Heteroptera (Hemiptera) from Argentinean Patagonia. Revista de la Sociedad Entomologica Argentina 68: 177–185.

    Google Scholar 

  • Moncada, C., 2011. Patrones reproductivos y de desarrollo larval de un ensamble de anuros enuna laguna de un mallín de bosque nordpatagónico. Licenciatura Thesis. San Carlos de Bariloche. Universidad Nacional del Comahue.

  • Nakazawa, T., S.-Y. Ohba & M. Ushio, 2013. Predator-prey body size relationships when predators can consume prey larger than themselves. Biology Letters. https://doi.org/10.1098/rsbl.2012.1193.

    Article  PubMed  PubMed Central  Google Scholar 

  • National Research Council, 1995. Wetlands: Characteristics and Boundaries. The National Academies Press, Washington, DC. https://doi.org/10.17226/4766.

    Book  Google Scholar 

  • Oertli, B., D. Auderset-Joye, E. Castella, R. Juge, A. Lehmann & J. B. Lachavanne, 2005. PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquatic Conservation: Marine and Freshwater Research 15: 665–679.

    Article  Google Scholar 

  • Ohba, S.-Y. & T. Haruki, 2015. Young giant water bug nymphs prefer larger prey: changes in foraging behaviour with nymphal growth in Kirkaldyia deyrolli. Biological Journal of Linnean Society 117: 601–606.

    Article  Google Scholar 

  • Ohba, S.-Y. & F. Nakasuji, 2006. Dietary items of predacious aquatic bugs Nepoidea: Heteroptera in Japanese wetlands. Limnology 7: 41–43.

    Article  Google Scholar 

  • Ohba, S-Y. & H. Tatsuta, 2016. Young giant water bug nymphs prefer larger prey: changes in foraging behaviour with nymphal growth in Kirkaldyia deyrolli. Biological Journal of the Linnean Society. https://doi.org/10.1111/bij.12693

    Article  Google Scholar 

  • Ohba, S., H. Miyasaka & F. Nakasuji, 2008a. The role of amphibian prey in the diet and growth of giant water bug nymphs in Japanese rice fields. Population Ecology 50: 9–16.

    Article  Google Scholar 

  • Ohba, S., H. Tatsuta & F. Nakasuji, 2008b. Variation in the geometry of foreleg claws in sympatric giant water bug species: an adaptive trait for catching prey? Entomologia Experimentalis et Applicata 129: 223–227.

    Article  Google Scholar 

  • Okada, H. & F. Nakasuji, 1993a. Pattern of local distribution and coexistence of two giant water bugs, Diplonychus japonicus and D. major Hemiptera: Belostomatidae in Okayama, western Japan. Japanese Journal of Entomology 61: 79–84.

    Google Scholar 

  • Okada, H. & F. Nakasuji, 1993b. Comparative studies on the seasonal occurrence, nymphal development and food menu in two giant water bugs, Diplonychus japonicas (Vuillefroy) and Diplonychus major (Esaki) Hemiptera: Belostomatidae. Research in Population Ecology 35: 15–22.

    Article  Google Scholar 

  • Pereira, M. H. & A. L. Melo, 1998. Influencia do tipo de presa no desenvolvimento e na preferencia alimentar de Belostoma anurum Herrich-Schnaffer 1948 e Belostoma plebejum (Stal, 1858) (Heteroptera: Belostomatidae). Ecología de Insectos Acuáticos. Series Oecologia Brasiliensis 5: 41–49.

    Article  Google Scholar 

  • Perotti, M. G., M. C. Dieguez & F. G. Jara, 2005. Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Revista Chilena de Historia Natural 78: 723–737.

    Article  Google Scholar 

  • Persson Vinnersten, T., 2007. Aquatic insects in temporary freshwater wetlands - Predator-prey relationships and how to study them. Introductory Research Essay, Upsala 36 pp. ISSN 140468xx

  • Raut, S. K., T. C. Saha & B. Mukhopadhyay, 1988. Predacious waterbugs in the control of vector snails. Bicovas 1: 175–185.

    Google Scholar 

  • Runck, C. & D. W. Blinn, 1994. Role of Belostoma bakeri (Heteroptera) in the trophic ecology of a fishless desert spring. Limnology and Oceanography 39: 1800–1812.

    Article  Google Scholar 

  • Saha, N., G. Aditya, G. K. Saha & S. E. Hampton, 2010. Opportunistic foraging by heteropteran mosquito predators. Aquatic Ecology 44: 167–176.

    Article  CAS  Google Scholar 

  • Schmidt, B. R. & A. Amezquita, 2001. Predator-induced behavioral responses: tadpoles of neotropical frog Phyllomedusa tarsius do not respond to all predators. Herpetological Journal 11: 9–15.

    Google Scholar 

  • Schnack, J. A., 1971. Las ninfas del genero Belostoma, (Latreille) Hemiptera: Belostomatidae: Belostoma oxyurum (Dufour) y Belostoma bifoveolatum (Spinola). Revista de la Sociedad Entomológica Argentina 33: 77–85.

    Google Scholar 

  • Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of American Benthological Society 15: 64–86.

    Article  Google Scholar 

  • Semlitsch, R. D., W. E. Peterman, T. L. Anderson, D. L. Drake & B. H. Ousterhout, 2015. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians. PLoS ONE 10(4): e0123055.

    Article  Google Scholar 

  • Silveira-Manzotti, B. N., A. R. Manzotti, M. Ceneviva-Bastos & L. Casatti, 2016. Trophic structure of macroinvertebrates in tropical pasture streams. Acta Limnologica Brasiliencia 28: 1–10.

    Google Scholar 

  • Smith, R. L., 1974. Life history of Abedus herberti in Central Arizona (Hemiptera: Belostomatidae). Psyche 81: 272–283.

    Article  Google Scholar 

  • Smith, R. L., 1997. Evolution of paternal care in giant water bugs (Hemiptera: Belostomatidae). In Choe, J. C. & B. J. Crespi (eds), The Evolution of Social Behavior in Insects and Arachnids. Cambridge University Press, Cambridge: 116–149.

    Chapter  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. Freeman, New York: 887.

    Google Scholar 

  • Swart, C. C. & R. C. Taylor, 2004. Behavioral interactions between the giant water bug Belostoma lutarium and tadpoles of Bufo woodhousii. Southwestern Naturalist 3: 13–24.

    Article  Google Scholar 

  • Tobler, M., K. Roach, K. O. Winemiller, R. L. Morehouse & M. Plath, 2013. Population structure, habitat use, and diet of giant water bugs in a sulfidic cave. Southwestern Naturalist 58: 420–426.

    Article  Google Scholar 

  • Todd, B. D., D. E. Scott, J. H. K. Pechmann & J. W. Gibbons, 2011. Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proceedings of the Royal Society of London: Series B 278: 2191–2197.

    Article  Google Scholar 

  • Toledo, L. F., 2005. Predation of juvenile and adult anurans by invertebrates: current knowledge and perspectives. Herpetological Review 36: 395–400.

    Google Scholar 

  • Toledo, L. F., R. R. Silva & C. F. B. Haddad, 2007. Anurans as prey: an exploratory analysis and size relationships between predators and their prey. Journal of Zoology 271: 170–177.

    Article  Google Scholar 

  • Urban, M. C., 2007. Predator size and phenology shape prey survival in temporary ponds. Oecologia 154: 571–580.

    Article  Google Scholar 

  • Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archive of Hydrobiology 58: 97–206.

    Google Scholar 

  • Yang, L. H. & V. H. W. Rudolf, 2010. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters 13: 1–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was performed under the institutional animal care guidelines established by the Administración de Parques Nacionales of Argentina (APN). Animals were collected under Permit no. 52-AP-16 (Subsecretaria de Medio Ambiente y Manejo de Áreas Protegidas de San Carlos de Bariloche) and Permit no. 1532 (Secretaria de Ambiente y Desarrollo Sustentable de la Provincia de Rio Negro). A. Shaw reviewed the English text and M.E. Cuello helped with sampling frog eggs. I thank the two reviewers who made valuable comments on earlier drafts of the manuscript. This work was funded partially by research grant PICT 2011 (Agencia, FONCyT) to F. Jara and by the UNComa B166 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Gastón Jara.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2019_3928_MOESM1_ESM.docx

Supplementary material 1 (DOCX 1127 kb). Online Resource 1. Belostoma bifoveolatum, male carrying eggs (A) and studied wetlands, Las Cartas (B), Llao Llao (C) and Camping Musical (E)

10750_2019_3928_MOESM2_ESM.docx

Supplementary material 2 (DOCX 241 kb). Online Resource 2. Belostoma bifoveolatum life stages (A) and average total length (± SE) of each stage used in the experiments (B). Different numbers at the top of the bar indicate significant differences (Dunn’s test pairwise comparison, P < 0.01)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jara, F.G. The impact of phenology on the interaction between a predaceous aquatic insect and larval amphibians in seasonal ponds. Hydrobiologia 835, 49–61 (2019). https://doi.org/10.1007/s10750-019-3928-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3928-5

Keywords

Navigation