Skip to main content

Quantitative response of riverine benthic invertebrates to sediment grain size and shear stress

Abstract

The most widespread pressure impacting river ecological status is the degradation of key hydromorphologic elements, such as sediment type and flow rate. However, almost nothing is known about the quantitative relationship between benthic invertebrate abundance and these elements. This synthesis compiles quantitative data on physical requirements and thresholds for invertebrates relative to two hydromorphologic factors: substrate size and hydraulic energy (measured as shear stress). Both factors are commonly a focus of river rehabilitation. However, we found only limited literature data that we could use to identify invertebrate preferences (189 taxa). Preferred substrate sizes of all stream epifauna we examined varied between 0.05 and 400 mm and they prefer shear stresses from 0.13 to 3.67 N m−2. There was no difference in variation of preferred conditions between the examined taxonomic levels. We suspect that taxa preferring hydraulic environments with shear stresses < 0.64 N m−2 are affected more by environmental factors than solely being constrained by substrate or hydraulic energy preferences. Such taxa might be useful as sensitive indicator species for evaluating stream integrity. Hence, to optimize restoration success for riverine biota, hydromorphological forces should be mitigated by manipulating habitat complexity in a way that it enhances intact ecological processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, Dordrecht.

    Google Scholar 

  • Ambühl, H., 1960. Die Bedeutung der Strömung als ökologischer Faktor. PhD, ETH Zürich.

  • Angradi, T. R., 1999. fine sediment and macroinvertebrate assemblages in Appalachian streams: a field experiment with biomonitoring applications. Journal of the North American Benthological Society 18: 49–66.

    Google Scholar 

  • Barnes, J. B., I. P. Vaughan & S. J. Ormerod, 2013. Reappraising the effects of habitat structure on river macroinvertebrates. Freshwater Biology 58: 2154–2167.

    Google Scholar 

  • Beauger, A., N. Lair, P. Reyes-Marchant & J. L. Peiry, 2006. The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics. Hydrobiologia 571: 63–76.

    Google Scholar 

  • Bérg, K., P. Jónasson & K. W. Ockelmann, 1962. The respiration of some animals from the Profundal Zone of a lake. Hydrobiologia 19: 1–39.

    Google Scholar 

  • Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.

    CAS  PubMed  Google Scholar 

  • Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. G. Solimini, W. Van de Bund, N. Zampoukas & D. Hering, 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.

    Google Scholar 

  • Borchardt, D., 1993. Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams. Freshwater Biology 29: 221–227.

    Google Scholar 

  • Bradbeer, P. A. & A. A. Savage, 1980. Some observations on the distribution and life history of Caenis robusta Eaton (Ephemeroptera) in Cheshire and North Shropshire, England. Hydrobiologia 68: 87–90.

    Google Scholar 

  • Brodersen, K. P., O. L. E. Pedersen, I. R. Walker & M. T. Jensen, 2008. Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshwater Biology 53: 593–602.

    Google Scholar 

  • Buss, D., D. Baptista, J. Nessimian & M. Egler, 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518: 179–188.

    Google Scholar 

  • Chessman, B. C., K. A. Fryirs & G. J. Brierly, 2006. Linking geomorphic character, behaviour and condition to fluvial biodiversity: implications for river management. Aquatic Conservation 16: 267–288.

    Google Scholar 

  • Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.

    Google Scholar 

  • Culp, J. M., S. J. Walde & R. W. Davies, 1983. Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences 40: 1568–1574.

    Google Scholar 

  • Davis, J. A. & L. A. Barmuta, 1989. An ecologically useful classification of near-bed flows in streams and rivers. Freshwater Biology 21: 271–282.

    Google Scholar 

  • Dewson, Z. S., A. B. W. James & R. G. Death, 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.

    Google Scholar 

  • Dolédec, S., N. Lamouroux, U. Fuchs & S. Mérigoux, 2007. Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology 52: 145–164.

    Google Scholar 

  • Downes, B. J. & J. Lancaster, 2010. Does dispersal control population densities in advection-dominated systems? A fresh look at critical assumptions and a direct test. Journal of Animal Ecology 79: 235–248.

    PubMed  Google Scholar 

  • Downes, B. J., P. S. Lake, A. Glaister & N. R. Bond, 2006. Effects of sand sedimentation on the macroinvertebrate fauna of lowland streams: are the effects consistent? Freshwater Biology 51: 144–160.

    Google Scholar 

  • Duan, X., Z. Wang, M. Xu & K. Zhang, 2009. Effect of streambed sediment on benthic ecology. International Journal of Sediment Research 24: 325–338.

    Google Scholar 

  • EEA, 2000. European Waters – Assessment of Status and Pressures. European Environmental Agency, Copenhagen.

    Google Scholar 

  • Elliott, J. M., 2008. The ecology of riffle beetles (Coleoptera: Elmidae). Freshwater Reviews 1: 189–203.

    Google Scholar 

  • Elosegi, A. & S. Sabater, 2013. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia 712: 129–143.

    Google Scholar 

  • Fehér, J., J. Gáspár, K. Szurdiné-Veres, A. Kiss, P. Kristensen, M. Peterlin, L. Globevnik, T. Kirn, S. Semerádova, A. Künitzer, U. Stein, K. Austnes, C. Spiteri, T. Prins, E. Laukkonen & A.-S. Heiskanen, 2012. Hydromorphological alterations and pressures in European rivers, lakes, transitional and coastal waters. Thematic assessment for EEA Water 2012 Report. European Topic Centre on Inland, Coastal and Marine Waters, Prague, ETC/ICM Technical Report 2/2012.

  • Feld, C. K. & D. Hering, 2007. Community structure of function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology 52: 1380–1399.

    Google Scholar 

  • Feld, C. K., S. Birk, D. C. Bradley, D. Hering, J. Kail, A. Marzin, A. Melcher, D. Nemitz, M. L. Pedersen, F. Pletterbauer, D. Pont, P. F. M. Verdonschot & N. Friberg, 2011. From natural to degraded rivers and back again: a test of restoration ecology theory and practice. Advances in Ecological Research 44: 119–209.

    Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. Sage, Thousand Oaks, CA.

    Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Google Scholar 

  • Gabel, F., X.-F. Garcia, I. Schnauder & M. Pusch, 2012. Effects of ship-induced waves on littoral benthic invertebrates. Freshwater Biology 57: 2425–2435.

    Google Scholar 

  • Gibbins, C., R. J. Batalla & D. Vericat, 2010. Invertebrate drift and benthic exhaustion during disturbance: response of mayflies (Ephemeroptera) to increasing shear stress and river-bed instability. River Research and Applications 26: 499–511.

    Google Scholar 

  • Gore, J. A., 1996. Responses of aquatic biota to hydrological change. In Petts, G. E. & P. Calow (eds), River Biota, Diversity and Dynamics. Blackwell Science, Oxford: 209–230.

    Google Scholar 

  • Graeber, D., M. Pusch, S. Lorenz & M. Brauns, 2013. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717: 147–159.

    CAS  Google Scholar 

  • Graf, W., A. W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez, J. Murphy & A. Schmidt-Kloiber, 2007. Plecoptera Indicator Database. Euro-limpacs project, Workpackage 7 – indicators of ecosystem health, Task 4, www.freshwaterecology.info, version 5.0 (accessed on 29.11.2012).

  • Graf, W., A. W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez & C. Davie, 2009. Distribution and ecological preferences of European freshwater organisms. Pensoft Publishers, Sofia-Moscow.

    Google Scholar 

  • Growns, I. O. & J. A. Davis, 1994. Longitudinal changes in near-bed flows and macroinvertebrate communities in a Western Australian stream. Journal of the North American Benthological Society 13: 417–438.

    Google Scholar 

  • Haase, P., D. Hering, S. C. Jähnig, A. W. Lorenz & A. Sundermann, 2013. The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 704: 475–488.

    Google Scholar 

  • Hart, D. & C. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.

    Google Scholar 

  • Hauer, C., G. Unfer, W. Graf, P. Leitner, B. Zeiringer & H. Habersack, 2012. Hydro-morphologically related variance in benthic drift and its importance for numerical habitat modelling. Hydrobiologia 683: 83–108.

    Google Scholar 

  • Hering, D., J. Arovitta, A. Baattrupp-Pedersen, K. Brabec, T. Buijze, F. Ecke, N. Friberg, M. Gielczewski, K. Januschke, J. Kohler, B. Kupilas, A. Lorenz, S. Muhar, A. Paillex, M. Poppe, T. Schmidt, S. Schmutz, J. E. Vermaat, P. Verdonschot & R. Verdonschot, 2015. Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study on 20 European restoration projects. Journal of Applied Ecology 52: 1518–1527.

    Google Scholar 

  • Holomuzki, J. R. & B. J. F. Biggs, 2000. Taxon-specific responses to high-flow disturbance in streams: implications for population persistence. Journal of the North American Benthological Society 19: 670–679.

    Google Scholar 

  • Imbert, J. B. & J. Perry, 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia 436: 191–208.

    Google Scholar 

  • Int Panis, L., L. Bervoets & R. Verheyen, 1994. The spatial distribution of Caenis horaria (L., 1758) (Caenidae, Ephemeroptera) in a pond in Niel (Belgium). Bulletin et annales de la Société entomologique de Belgique 131: 47–52.

    Google Scholar 

  • Jähnig, S. C. & A. W. Lorenz, 2008. Substrate-specific macroinvertebrate diversity patterns following stream restoration. Aquatic Sciences - Research Across Boundaries 70: 292–303.

    Google Scholar 

  • Janauer, G. A., U. Schmidt-Mumm & B. Schmidt, 2010. Aquatic macrophytes and water current velocity in the Danube River. Ecological Engineering 36: 1138–1145.

    Google Scholar 

  • Johnson, R. K., 1995. The indicator concept in freshwater biomonitoring. In Cranston, P. (ed.), Chironomids: From Genes to Ecosystems. CSIRO Publications, Melbourne: 11–27.

    Google Scholar 

  • Jowett, I. G., 2000. Flow management. In Collier, K. J. & M. J. Winterbourn (eds), New Zealand Stream Invertebrates: Ecology and Implications for Management. New Zealand Limnological Society, Christchurch: 289–312.

    Google Scholar 

  • Jowett, I. G., 2003. Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Research and Applications 19: 495–507.

    Google Scholar 

  • Kail, J. & D. Hering, 2009. The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Research and Applications 25: 537–550.

    Google Scholar 

  • Kakouei, K., J. Kiesel, J. Kail, M. Pusch & S. C. Jähnig, 2017. Quantitative hydrological preferences of benthic stream invertebrates in Germany. Ecological Indicators 79: 163–172.

    Google Scholar 

  • Krumbein, W. C. & L. L. Sloss, 1963. Stratigraphy and Sedimentation. Freeman & Co., San Francisco.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Lamouroux, N., S. Mérigoux, S. Dolédec & T. H. Snelder, 2013. Transferability of hydraulic preference models for aquatic macroinvertebrates. River Research and Applications 29: 933–937.

    Google Scholar 

  • Lange, C., M. Schneider, M. Mutz, M. Haustein, M. Halle, M. Seidel, H. Sieker, C. Wolter & R. Hinkelmann, 2015. Model-based design for resoration of a small urban river. Journal of Hydro-environment Research 9: 226–236.

    Google Scholar 

  • Lorenz, A. W. & C. K. Feld, 2013. Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704: 489–501.

    Google Scholar 

  • Lorenz, A. W., S. C. Jähnig & D. Hering, 2009. Re-meandering German lowland streams: qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates. Environmental Management 44: 745–754.

    PubMed  Google Scholar 

  • Lorenz, S., V. Martinez-Fernández, C. Alonso, E. Mosselman, D. García de Jalón, M. González del Tánago, B. Belletti, D. Hendriks & C. Wolter, 2016a. Fuzzy cognitive mapping for predicting hydromorphological responses to multiple pressures in rivers. Journal of Applied Ecology 53: 559–566.

    Google Scholar 

  • Lorenz, S., M. Leszinski & D. Graeber, 2016b. Meander reconnection method determines restoration success for macroinvertebrate communities in a German lowland river. International Review of Hydrobiology 101: 123–131.

    Google Scholar 

  • Lyche-Solheim, A., C. K. Feld, S. Birk, G. Phillips, L. Carvalho, G. Morabito, U. Mischke, N. Willby, M. Søndergaard, S. Hellsten, A. Kolada, M. Mjelde, J. Böhmer, O. Miler, M. Pusch, C. Argillier, E. Jeppesen, T. Lauridsen & S. Poikane, 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704: 57–74.

    Google Scholar 

  • Mackie, G. L., 2007. Biology of Freshwater Corbiculid and Sphaeriid Clams of North America. Ohio Biological Survey Bulletin New Series, Columbus.

    Google Scholar 

  • Maxted, J. R., B. F. Evans & M. R. Scarsbrook, 2003. Development of standard protocols for macroinvertebrate assessment of soft-bottomed streams in New Zealand. New Zealand Journal of Marine and Freshwater Research 37: 793–807.

    Google Scholar 

  • McCabe, D. J. & N. J. Gotelli, 2000. Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124: 270–279.

    CAS  PubMed  Google Scholar 

  • Meier, C., P. Haase, P. Rolauffs, K. Schindehütte, F. Schöll, A. Sundermann & D. Hering, 2006. Methodisches Handbuch Fließgewässerbewertung. Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EGWasserrahmenrichtlinie. http://www.fliessgewaesserbewertung.de/downloads/abschlussbericht20060331anhangIX.pdf.

  • Menninger, H. L. & M. A. Palmer, 2006. Restoring ecological communities: from theory to practice. In Falk, D. A., M. A. Palmer & J. B. Zedler (eds), Foundations of Restoration Ecology. Island Press, Washington, DC: 88–112.

    Google Scholar 

  • Mérigoux, S. & S. Dolédec, 2004. Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology 49: 600–613.

    Google Scholar 

  • Mérigoux, S., N. Lamouroux, J.-M. Olivier & S. Dolédec, 2009. Invertebrate hydraulic preferences and predicted impacts of changes in discharge in a large river. Freshwater Biology 54: 1343–1356.

    Google Scholar 

  • Miller, S. W., P. Budy & J. C. Schmidt, 2010. Quantifying macroinvertebrate responses to in-stream habitat restoration: applications of meta-analysis to river restoration. Restoration Ecology 18: 8–19.

    Google Scholar 

  • Milner, V. S. & D. J. Gilvear, 2012. Characterization of hydraulic habitat and retention across different channel types; introducing a new field-based technique. Hydrobiologia 694: 219–233.

    Google Scholar 

  • Milner, V. S., N. J. Willby, D. J. Gilvear & C. Perfect, 2015. Linkages between reach-scale physical habitat and invertebrate assemblages in upland streams. Marine and Freshwater Research 66: 438–448.

    Google Scholar 

  • Möbes-Hansen, B. & J. A. Waringer, 1998. The influence of hydraulic stress on microdistribution patterns of zoobenthos in a sandstone brook (Weidlingbach, Lower Austria). International Review of Hydrobiology 83: 381–396.

    Google Scholar 

  • Monk, W. A., P. J. Wood, D. M. Hannah, C. A. Extence, R. P. Chadd & M. J. Dunbar, 2012. How does macroinvertebrate taxonomic resolution influence ecohydrological relationships in riverine ecosystems? Ecohydrology 5: 36–45.

    Google Scholar 

  • Muotka, T. & J. Syrjänen, 2007. Changes in habitat structure, benthic invertebrate diversity, trout populations and ecosystem processes in restored forest streams: a boreal perspective. Freshwater Biology 52: 724–737.

    Google Scholar 

  • Pabst, S., N. Scheifhacken, J. Hesselschwerdt & K. M. Wantzen, 2008. Leaf litter degradation in the wave impact zone of a pre-alpine lake. Hydrobiologia 613: 117–131.

    Google Scholar 

  • Palmer, M. A., H. L. Menninger & E. Bernhardt, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.

    Google Scholar 

  • Pan, B. Z., Z. Y. Wang & M. Z. Xu, 2012. Macroinvertebrates in abandoned channels: assemblage characteristics and their indications for channel management. River Research and Applications 28: 1149–1160.

    Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. Bioscience 47: 769–784.

    Google Scholar 

  • Poole, W. & K. Stewart, 1976. The vertical distribution of macrobenthos within the substratum of the Brazos river, Texas. Hydrobiologia 50: 151–160.

    Google Scholar 

  • Power, M. E., J. R. Holomuzki & R. L. Lowe, 2013. Food webs in Mediterranean rivers. Hydrobiologia 719: 119–136.

    Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology 46: 1529–1551.

    CAS  Google Scholar 

  • R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.

  • Rabeni, C. F. & G. W. Minshall, 1977. Factors affecting micro-distribution of stream benthic insects. Oikos 29: 33–43.

    Google Scholar 

  • Reice, S. R., 1980. The role of substratum in benthic macroinvertebrate microdistribution and litter decomposition in a woodland stream. Ecology 61: 580–590.

    Google Scholar 

  • Robson, B. J. & E. T. Chester, 1999. Spatial patterns of invertebrate species richness in a river: the relationship between riffles and microhabitats. Austral Ecology 24: 599–607.

    Google Scholar 

  • Robson, B. J. & B. D. Mitchell, 2010. Metastability in a river subject to multiple disturbances may constrain restoration options. Marine and Freshwater Research 61: 778–785.

    CAS  Google Scholar 

  • Robson, B. J., E. T. Chester & J. A. Davis, 1999. Manipulating the intensity of near-bed turbulence in rivers: effects on benthic invertebrates. Freshwater Biology 42: 645–653.

    Google Scholar 

  • Roni, P., K. Hanson, T. Beechie, G. Pess, M. Pollock & D. M. Bartley, 2005. Habitat Rehabilitation for Inland Fisheries. FAO Fisheries Technical Paper, 484, FAO, Rome.

  • Roni, P., K. Hanson & T. Beechie, 2008. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. North American Journal of Fisheries Management 28: 856–890.

    Google Scholar 

  • Schmidt-Kloiber, A. & D. Hering, 2015. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282.

    Google Scholar 

  • Schnauder, I., S. Rudnick, X.-F. Garcia & J. Aberle, 2010. Incipient Motion and Drift of Benthic Invertebrates in Boundary Shear Layers. In Dittrich, K., J. Aberle & P. Geisenhainer (eds), Riverflow 2010. Bundesanstalt für Wasserbau, Karlsruhe.

    Google Scholar 

  • Schröder, M., J. Kiesel, A. Schattmann, S. C. Jähnig, A. W. Lorenz, S. Kramm, H. Keizer-Vlek, P. Rolauffs, W. Graf, P. Leitner & D. Hering, 2013. Substratum associations of benthic invertebrates in lowland and mountain streams. Ecological Indicators 30: 178–189.

    Google Scholar 

  • Shvidchenko, A. B., G. Pender & T. B. Hoey, 2001. Critical shear stress for incipient motion of sand/gravel streambeds. Water Resources Research 37: 2273–2283.

    Google Scholar 

  • Singh, J., O. P. Gusain & M. P. Gusain, 2010. Benthic insect-substratum relationship along an altitudinal gradient in a Himalayan stream, India. International Journal of Ecology and Environmental Sciences 36: 215–231.

    Google Scholar 

  • Söhngen, B., J. Koop, S. Knight, J. Rythönen, P. Beckwith, N. Ferrari, J. Iribarren, T. Keevin, C. Wolter & S. Maynord, 2008. Considerations to Reduce Environmental Impacts of Vessels. PIANC Report 99. PIANC, Brussels.

    Google Scholar 

  • Sonderegger, D., 2012. SiZer: SiZer: significant zero crossings. R package version 0.1-4. https://CRAN.R-project.org/package=SiZer.

  • Sousa, W. P., 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353–391.

    Google Scholar 

  • Sponseller, R. A., E. F. Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409–1424.

    Google Scholar 

  • Statzner, B., 1981. The relationship between “hydraulic stress” and microdistributions of benthic macroinvertebrates in a lowland running water system, the Schierenseebrooks (North Germany). Archiv für Hydrobiologie 91: 192–218.

    Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.

    Google Scholar 

  • Statzner, B., F. Kohmann & A. G. Hildrew, 1991. Calibration of FST-hemispheres against bottom shear stress in a laboratory flume. Freshwater Biology 26: 227–231.

    Google Scholar 

  • Stoll, S., P. Breyer, J. D. Tonkin, D. Früh & P. Haase, 2016. Scale-dependent effects of river habitat quality on benthic invertebrate communities – implications for stream restoration practice. Science of the Total Environment 553: 495–503.

    CAS  PubMed  Google Scholar 

  • Sundermann, A., C. Antons, N. Cron, A. W. Lorenz, D. Hering & P. Haase, 2011a. Hydromorphological restoration of running waters: effects on benthic invertebrate assemblages. Freshwater Biology 56: 1689–1702.

    Google Scholar 

  • Sundermann, A., S. Stoll & P. Haase, 2011b. River restoration success depends on the species pool of the immediate surroundings. Ecological Applications 21: 1962–1971.

    PubMed  Google Scholar 

  • Sundermann, A., M. Gerhardt, H. Kappes & P. Haase, 2013. Stressor prioritization in riverine ecosystems: Benthic invertebrates assemblages are shaped by water quality rather than by local habitat structure. Ecological Indicators 27: 83–96.

    Google Scholar 

  • Suren, A. M. & I. G. Jowett, 2006. Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology 51: 2207–2227.

    Google Scholar 

  • Timm, H., K. Mardi & T. Möls, 2008. Macroinvertebrates in Estonian streams: the effects of habitat, season, and sampling effort on some common metrics of biological quality. Estonian Journal of Ecology 57: 37–57.

    Google Scholar 

  • Tolkamp, H., 1982. Microdistribution of macroinvertebrates in lowland streams. Hydrobiological Bulletin 16: 133–148.

    Google Scholar 

  • Tonkin, J., S. Stoll, A. Sundermann & P. Haase, 2014. Dispersal distance and the pool of taxa, but not barriers, determine the colonisation of restored river reaches by benthic invertebrates. Freshwater Biology 59: 1843–1855.

    Google Scholar 

  • Tyler, E. H. M., P. J. Somerfield, E. V. Berghe, J. Bremner, E. Jackson, O. Langmead, M. L. D. Palomares & T. J. Webb, 2012. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Global Ecology and Biogeography 21: 922–934.

    Google Scholar 

  • USEPA (United States Environment Protection Agency), 2009. National Water Quality Inventory: Report to Congress. 2004 Reporting Cycle. United States Environmental Protection Agency, Office of Water, Washington, DC.

    Google Scholar 

  • Vaughan, I., M. Diamond, A. Gurnell, K. A. Hall, A. Jenkins, N. J. Milner, L. A. Naylor, D. A. Sear, G. Woodward & S. J. Ormerod, 2009. Integrating ecology with hydromorphology: a priority for river science and managment. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 113–125.

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York. ISBN 0-387-95457-0.

    Google Scholar 

  • Verdonschot, P. F. M., B. M. Spears, C. K. Feld, S. Brucet, H. Keizer-Vlek, A. Borja, M. Elliott, M. Kernan & R. K. Johnson, 2013. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704: 453–474.

    Google Scholar 

  • Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.

    Google Scholar 

  • Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.

    Google Scholar 

  • Waters, T. F., 1995. Sediment in Streams: Sources, Biological Effects, and Controls. American Fisheries Society, Bethesda, MD.

    Google Scholar 

  • Weigel, B. M., L. Z. Wang, P. W. Rasmussen, J. T. Butcher, P. M. Stewart, T. P. Simon & M. J. Wiley, 2003. Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern Lakes and forest ecoregion, USA. Freshwater Biology 48: 1440–1461.

    Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 507–524.

    Google Scholar 

  • Williams, D. D. & K. A. Moore, 1986. Microhabitat selection by a stream-dwelling amphipod – a multivariate-analysis approach. Freshwater Biology 16: 115–122.

    Google Scholar 

  • Wolter, C. & R. Arlinghaus, 2003. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13: 63–89.

    Google Scholar 

  • Wolter, C., R. Arlinghaus, A. Sukhodolov & C. Engelhardt, 2004. A model of navigation induced currents in inland waterways and implications for juvenile fish displacement. Environmental Management 34: 656–668.

    PubMed  Google Scholar 

  • Wolter, C., 2010. Functional vs scenic restoration – challenges to improve fish and fisheries in urban waters. Fisheries Management and Ecology 17: 176–185.

    Google Scholar 

  • Wolter, C., S. Lorenz, S. Scheunig, C. Schomaker, V. Martinez-Fernandez, C. Alonso, D. Garcia de Jalon, M. Gonzalez del Tanago, E. Mosselman, D. Hendriks & B. Beletti, 2015. Hydromorphic change and biotic response challenge efficient river rehabilitation. In: Angelopoulos, N., T. Buijse, M. van Oorschot & E. Kampa (eds) Proceedings of the International Conference on River and Stream Restoration “Novel Approaches to Assess and Rehabilitate Modified Rivers”. FP7 REFORM deliverable 7.5: 79–84.

Download references

Acknowledgements

We thank Daniel Graeber for helpful comments on statistics and an anonymous reviewer for his help in linguistic editing of the manuscript. This study was supported by the project REFORM that received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No. 282656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lorenz.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenz, S., Wolter, C. Quantitative response of riverine benthic invertebrates to sediment grain size and shear stress. Hydrobiologia 834, 47–61 (2019). https://doi.org/10.1007/s10750-019-3908-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3908-9

Keywords