Skip to main content

Advertisement

Log in

Mangroves dramatically increase carbon storage after 3 years of encroachment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In North America, the dynamic ecotonal boundary between mangrove and salt marsh is currently fluctuating in response to freeze-free winters, which can cause rapid alterations in a number of wetland processes and attributes. Permanent plots were established in pure salt marsh habitat along the Atlantic coast of Florida in 2015, and by 2018, mangrove saplings had encroached into plots. In this study, above- and belowground biomass measurements and soil C in the top 10-cm soil profile were quantified in 2018 and compared to 2015 data to better understand the effects of mangrove encroachment on C storage in salt marsh habitat. Plant and soil fractions were tested for δ13C stable isotopic signatures to elucidate soil C sources. In 3 years, mangrove biomass increased dramatically and soil C doubled in pure salt marsh plots, consequently increasing total C in the system. Soil organic matter increased, while there was no change in soil C:N. δ13C values suggest that soil C was derived mainly from salt marsh soil organic matter, especially that of belowground, rather than aboveground biomass. These results provide real-time, quantitative data on the encroachment of mangroves into salt marshes over a relatively short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adame, M. F. & B. Fry, 2016. Source and stability of soil carbon in mangrove and freshwater wetlands of the Mexican Pacific coast. Wetlands Ecology and Management 24: 129–137.

    Article  CAS  Google Scholar 

  • Alongi, D. M., 2011. Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental Science & Policy 14(4): 462–470.

    Article  Google Scholar 

  • Alongi, D. M., 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science 6: 195–219.

    Article  PubMed  Google Scholar 

  • Asner, G. P., S. Archer, R. F. Hughes, R. J. Ansley & C. A. Wessman, 2003. Net changes in regional woody vegetation cover and carbon storage in Texas drylands, 1937–1999. Global Change Biology 9(3): 316–335.

    Article  Google Scholar 

  • Armitage, A. R., W. E. Highfield, S. D. Brody & P. Louchouarn, 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10: e0125404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball, M. C., 1980. Patterns of secondary succession in a mangrove forest of southern Florida. Oecologia 44(2): 226–235.

    Article  PubMed  Google Scholar 

  • Bertness, M. D., 1991. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72: 138–148.

    Article  Google Scholar 

  • Camilleri, J. C., 1992. Leaf-litter processing by invertebrates in a mangrove forest in Queensland. Marine Biology 114: 139–145.

    Google Scholar 

  • Castañeda-Moya, E., R. R. Twilley, V. H. Rivera-Monroy, K. Zhang, S. E. Davis & M. Ross, 2010. Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries and Coasts 33(1): 45–58.

    Article  Google Scholar 

  • Cavanaugh, K. C., J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez & I. C. Feller, 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111: 723–727.

    Article  CAS  Google Scholar 

  • Cheng, X., Y. Luo, X. Xu, R. Sherry & Q. Zhang, 2011. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences 8: 1487–1498.

    Article  CAS  Google Scholar 

  • Chmura, G. L., P. Aharon, R. A. Socki & R. Abernethy, 1987. An inventory of 13 C abundances in coastal wetlands of Louisiana, USA: vegetation and sediments. Oecologia 74(2): 264–271.

    Article  CAS  PubMed  Google Scholar 

  • Chmura, G. L., S. C. Anisfeld, D. R. Cahoon & J. C. Lynch, 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemistry Cycles 17(4): 1111–1123.

    Article  Google Scholar 

  • Choi, Y., Y. Wang, Y. P. Hsieh & L. Robinson, 2001. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: evidence from carbon isotopes. Global Biogeochemical Cycles 15: 311–319.

    Article  CAS  Google Scholar 

  • Comeaux, R. S., M. A. Allison & T. S. Bianchi, 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising seas. Estuarine, Coastal and Shelf Science 96: 81–95.

    Article  CAS  Google Scholar 

  • Currin, C. A., S. Y. Newell & H. W. Paerl, 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series 121: 99–116.

    Article  Google Scholar 

  • Dangremond, E. M. & I. C. Feller, 2016. Precocious reproduction increases at the leading edge of a mangrove range expansion. Ecology and Evolution 6: 5087–5092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidhman & M. Kanninen, 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4: 293–297.

    Article  CAS  Google Scholar 

  • Doughty, C. L., J. A. Langley, W. S. Walker, I. C. Feller, R. Schaub & S. K. Chapman, 2016. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts 39: 385–396.

    Article  CAS  Google Scholar 

  • Duarte, C. M., S. Agustí, P. A. Del Giorgio & J. J. Cole, 1999. Regional carbon imbalances in the oceans. Science 284: 1735.

    Google Scholar 

  • Duarte, C. M., J. J. Middleburg & N. Caraco, 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8.

    Article  CAS  Google Scholar 

  • Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasam & N. Marba, 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961–968.

    Article  CAS  Google Scholar 

  • Ehleringer, J. R., N. Buchmann & L. B. Flanagan, 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications 10: 412–422.

    Article  Google Scholar 

  • Feng, J., J. Zhou, L. Wang, X. Cui, C. Ning, H. Wu, X. Zhu & G. Lin, 2017. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock. Chemosphere 184: 774–783.

    Article  CAS  PubMed  Google Scholar 

  • Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute. “Salt Marshes in Florida” [vector digital data]. 1:24,000. 2009. http://geodata.myfwc.com/datasets/20ab7447d9424929bf0e7a2a633d6407_3 Accessed Nov 2015

  • Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute. “Counties 1:24,000 Scale Polygon Florida” [vector digital data]. 1:24,000. 10067. http://geodata.myfwc.com/datasets/982d999dda774cc4a1cf0ac8908f4c92_3 Accessed Nov 2015

  • Guo, H., C. Weaver, S. P. Charles, A. Whitt, S. Dastidar, P. D’Odorico, J. Fuenter, J. A. Kominoski, A. R. Armitage & S. C. Pennings, 2017. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology 98: 762–772.

    Article  PubMed  Google Scholar 

  • Haines, E. B., 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh 1. Limnology and Oceanography 21(6): 880–883.

    Article  Google Scholar 

  • Henry, K. M. & R. R. Twilley, 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research 29: 1273–1283.

    Article  Google Scholar 

  • Hibbard, K. A., S. Archer, D. S. Schimel & D. W. Valentine, 2001. Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82: 1999–2011.

    Article  Google Scholar 

  • Kauffman, J. B. & D. C. Donato, 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working paper 86. Center for International forestry research (CIFOR) Bogor, Indonesia.

  • Kelleway, J. J., N. Saintilan, P. I. Macreadie, C. G. Skilbeck, A. Zawadzki & P. J. Ralph, 2016. Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Global Change Biology 22: 1097–1109.

    Article  PubMed  Google Scholar 

  • Kelleway, J. J., K. Cavanaugh, K. Rogers, I. C. Feller, E. Ens, C. Doughty & N. Saintilan, 2017. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology 23: 3967–3983.

    Article  PubMed  Google Scholar 

  • Kelleway, J. J., D. Mazumder, J. A. Baldock & N. Saintilan, 2018. Carbon isotope fractionation in the mangrove Avicennia marina has implications for food web and blue carbon research. Estuarine, Coastal and Shelf Science 205: 68–74.

    Article  CAS  Google Scholar 

  • Komiyama, J. E., S. Ong & S. Poungparn, 2008. Allometry, biomass and productivity of mangrove forests: a review. Aquatic Botany 89: 128–137.

    Article  Google Scholar 

  • Lewis, R. R. & F. M. Dunstan, 1975. The possible role of Spartina alterniflora Loisel. In establishment of mangroves in Florida: 82–100. In Proc. Second Annual Conference on Restoration of Coastal Vegetation in Florida Lewis, R. (ed.), Hillsborough Community College, Tampa, Florida: 203 p.

  • Liao, J. D., T. W. Boutton & J. D. Jastrow, 2006. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biology and Biochemistry 38: 3184–3196.

    Article  CAS  Google Scholar 

  • Lunstrum, A. & L. Chen, 2014. Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223–232.

    Article  CAS  Google Scholar 

  • Lovelock, C. E., 2008. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11(2): 342–354.

    Article  CAS  Google Scholar 

  • Lovelock, C. E., M. F. Adame, V. Bennion, M. Hayes, J. O’Mara, R. Reef & N. S. Saintilan, 2014. Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of South East Queensland, Australia. Estuaries and Coasts 37: 763–771.

    Article  CAS  Google Scholar 

  • Mateo, M. A., J. Romero, M. Pérez, M. M. Littler & D. S. Littler, 1997. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuarine Coastal and Shelf Science 44: 103–110.

    Article  Google Scholar 

  • McKee, K. L., I. A. Mendelssohn & M. W. Hester, 1988. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. American Journal of Botany. 75(9): 1352–1359.

    Article  Google Scholar 

  • McKee, K. L., D. R. Cahoon & I. C. Feller, 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.

    Article  Google Scholar 

  • McKee, K. L. & J. E. Rooth, 2008. Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 971–984.

    Article  Google Scholar 

  • Middleton, B. A. & K. L. McKee, 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. Journal of Ecology 89(5): 818–828.

    Article  Google Scholar 

  • Nilsson, C., R. L. Brown, R. Jansson & D. M. Merritt, 2010. The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews 85: 837–858.

    PubMed  Google Scholar 

  • Odum, E. P., 1966. The strategy of ecosystem development. Science 164: 262–270.

    Article  Google Scholar 

  • Osland, M. J., A. C. Spivak, J. A. Nestlerode, J. M. Lessmann, A. E. Almario, P. T. Heitmuller, M. J. Russell, K. W. Krauss, F. Alvarez, D. D. Dantin, J. E. Harvey, A. S. From, N. Cormier & C. L. Stagg, 2012. Ecosystem development after mangrove wetland creation: plant–soil change across a 20-year chronosequence. Ecosystems 15: 848–866.

    Article  CAS  Google Scholar 

  • Osland, M. J., R. H. Day, C. T. Hall, M. D. Brumfield, J. L. Dugas & W. R. Jones, 2017a. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology 98: 125–137.

    Article  PubMed  Google Scholar 

  • Osland, M. J., L. C. Feher, K. T. Griffith, K. C. Cavanaugh, N. M. Enwright, R. H. Day, C. L. Stagg, K. W. Krauss, R. J. Howard, J. B. Grace & K. Rogers, 2017b. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecological Monographs 87: 341–359.

    Article  Google Scholar 

  • Ouyang, X., S. Y. Lee & R. M. Connolly, 2017. The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth-Science Reviews 166: 53–63.

    Article  CAS  Google Scholar 

  • Palomo, L. & F. X. Niell, 2009. Primary production and nutrient budgets of Sarcocornia perennis ssp. alpini (Lag.) Castroviejo in the salt marsh of the Palmones River estuary (Southern Spain). Aquatic Botany 91: 130–136.

    Article  CAS  Google Scholar 

  • Perry, C. L. & I. A. Mendelssohn, 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29: 396–406.

    Article  Google Scholar 

  • Peterson, J. M. & S. S. Bell, 2012. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone. Ecology 93: 1648–1658.

    Article  PubMed  Google Scholar 

  • Peterson, J. M. & S. S. Bell, 2015. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise. PLoS ONE 10: e0119128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickens, C. N. & M. W. Hester, 2011. Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion. Estuaries and Coasts 34: 824–830.

    Article  Google Scholar 

  • Poret, N., R. R. Twilley, V. H. Rivera-Monroy & C. Coronado-Molina, 2007. Belowground decomposition of mangrove roots in Florida coastal Everglades. Estuaries and Coasts 30(3): 491–496.

    Article  CAS  Google Scholar 

  • Rodriguez, W., I. C. Feller & K. C. Cavanaugh, 2016. Spatio-temporal changes of a mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Global Ecology and Conservation 7: 245–261.

    Article  Google Scholar 

  • Ross, M. S., J. F. Meeder, J. P. Sah, P. L. Ruiz & G. J. Telesnicki, 2000. The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112.

    Article  Google Scholar 

  • Ross, M. S., P. L. Ruiz, J. P. Sah, D. L. Reed, J. Walters & J. F. Meeder, 2006. Early post-hurricane stand development in fringe mangrove forests of contrasting productivity. Plant Ecology 185(2): 283–297.

    Article  Google Scholar 

  • Saintilan, N., K. Rogers, D. Mazumder & C. Woodroffe, 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science 128: 84–92.

    Article  CAS  Google Scholar 

  • Scharenbroch, B. C., M. L. Flores-Mangual, B. Lepore, J. G. Bockheim & B. Lowery, 2010. Tree encroachment impacts carbon dynamics in a sand prairie in Wisconsin. Soil Science Society of America Journal 74(3): 956–968.

    Article  CAS  Google Scholar 

  • Shafer, D. J. & T. H. Roberts, 2008. Long-term development of tidal mitigation wetlands in Florida. Wetlands Ecology and Management 16(1): 23–31.

    Article  Google Scholar 

  • Sherrod, C. L. & C. McMillan, 1985. The distributional history and ecology of mangrove vegetation along the northern Gulf of Mexico coastal region.

  • Simpson, L. T., T. Z. Osborne, L. J. Duckett & I. C. Feller, 2017. Carbon Storages along a climate induced coastal wetland gradient. Wetlands 37: 1–13.

    Article  Google Scholar 

  • Smith, B. N. & S. Epstein, 1971. Two categories of 13C/12C ratios for higher plants. Plant physiology 47(3): 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens, P. W., S. L. Fox & C. L. Montague, 2006. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management 14: 435–444.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, S. D. Allen, R. Van Etten, D. Goehringer & S. Volkmann, 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89(1): 29–54.

    Article  CAS  Google Scholar 

  • Weiss, C., J. Weiss, J. Boy, I. Iskandar, R. Mikutta & G. Guggenberger, 2016. Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N. Ecology and Evolution 6: 5043–5056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wooller, M., B. Smallwood, M. Jacobson & M. Fogel, 2003. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.)(white mangrove) from Florida and Belize: implications for trophic level studies. Hydrobiologia 499: 13–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Aeronautics and Space Administration (NASA) Climate and Biological Response program (NNX11AO94G) and the National Science Foundation (NSF) MacroSystems Biology program (EF1065821). The authors would like to thank Florida State Parks, the Merritt Island National Wildlife Refuge, Guana-Tolmato-Matanzas National Estuarine Research Reserve, and Canaveral National Seashore for permits and unabridged access to their parks. We also thank L.J. Duckett, M.L. Lehmann, K.V. Curtis, and Z.R. Foltz for field and lab assistance. We sincerely thank the two anonymous reviewers for their edits and suggestions, which significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Simpson.

Additional information

Handling editor: K. W. Krauss

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simpson, L.T., Stein, C.M., Osborne, T.Z. et al. Mangroves dramatically increase carbon storage after 3 years of encroachment. Hydrobiologia 834, 13–26 (2019). https://doi.org/10.1007/s10750-019-3905-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3905-z

Keywords

Navigation