, Volume 833, Issue 1, pp 185–196 | Cite as

Fighting fish love robots: mate discrimination in males of a highly territorial fish by using female-mimicking robotic cues

  • Donato RomanoEmail author
  • Giovanni Benelli
  • Jiang-Shiou Hwang
  • Cesare Stefanini
Primary Research Paper


Among territorial animals, several species are characterized by males showing the same initial behaviours towards both sexes, leading to significant chances of injuries against conspecifics. In this study, we investigated how visual stimuli exhibited by a female-mimicking robotic replica can be exploited by highly territorial Betta splendens males to discriminate males from females. In addition, we tested the effect of light stimuli, mimicking the colour pattern of a reproductive female, on the consistence of courtship displays in B. splendens males. The intensity of male behaviours used in both courtship and not-physical agonistic interactions (e.g. fin spreading and gill flaring) was not importantly modulated by different stimuli. Conversely, behavioural displays used specifically in male–female interactions significantly increased when the robotic replica colour pattern mimicked a reproductive female. Furthermore, male courtship behaviours obtained in response to the robotic replica exhibiting light stimuli were comparable with responses towards authentic conspecific females. Our biomimetic approach to establish animal–robot individual interaction can represent an advanced strategy for trait-based ecology investigation, a rapidly developing research field.


Aggression Animal–robot interaction Bioinspired robotics Courtship behaviour Siamese fighting fish 



We would like to thank two anonymous reviewers for their kind help in improving an earlier version of this manuscript. We are grateful to Mr. Godfried Jansen Van Vuuren and Prof. Damiano Remorini for their assistance in developing the robotic fish replica. This research was supported by the H2020 Project “Submarine cultures perform long-term robotic exploration of unconventional environmental niches” (subCULTron) [640967FP7].

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.


  1. Abaid, N., T. Bartolini, S. Macrì & M. Porfiri, 2012. Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and colour. Behavioural Brain Research 233(2): 545–553.PubMedGoogle Scholar
  2. Abrahams, M. V., T. L. Robb & J. Hare, 2005. Effect of hypoxia on opercular displays: evidence for an honest signal? Animal Behaviour 70: 427–432.Google Scholar
  3. Andersson, S., 1989. Sexual selection and cues for female choice in leks of Jackson’s widowbird Euplectes jacksoni. Behavioural Ecology and Sociobiology 25: 403–410.Google Scholar
  4. Andersson, M., 1994. Sexual Selection. Princeton University Press, Princeton, NJ.Google Scholar
  5. Arnott, G., E. Beattie & R. W. Elwood, 2016. To breathe or fight? Siamese fighting fish differ when facing a real opponent or mirror image. Behavioural Processes 129: 11–17.PubMedGoogle Scholar
  6. ASAB/ABS, 2004. Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour 99: 1–9.Google Scholar
  7. Atema, J., 2018. Opening the chemosensory world of the lobster, Homarus americanus. Bulletin of Marine Science 94(3): 479–516.Google Scholar
  8. Bachmann, J. C., F. Cortesi, M. Hall, N. J. Marshall, W. Salzburger & H. F. Gante, 2016. Social selection maintains honesty of a dynamic visual signal in cichlid fish. bioRxiv. Scholar
  9. Batabyal, A. & M. Thaker, 2018. Lizards assess complex social signals by lateralizing colour but not motion detection. Journal of Experimental Biology. Scholar
  10. Benelli, G. & D. Romano, 2018. Does indirect mating trophallaxis boost male mating success and female egg load in Mediterranean fruit flies? Journal of Pest Science 91: 181–188.Google Scholar
  11. Benelli, G., D. Romano, R. H. Messing & A. Canale, 2015a. First report of behavioural lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the Asian tiger mosquito, Aedes albopictus. Parasitology Research 114(4): 1613–1617.PubMedGoogle Scholar
  12. Benelli, G., D. Romano, N. Desneux, R. H. Messing & A. Canale, 2015b. Sex differences in fighting-induced hyperaggression in a fly. Animal Behaviour 104: 165–174.Google Scholar
  13. Benelli, G., D. Romano, G. Rocchigiani, A. Caselli, F. Mancianti, A. Canale & C. Stefanini, 2018a. Behavioral asymmetries in ticks—Lateralized questing of Ixodes ricinus to a mechatronic apparatus delivering host-borne cues. Acta Tropica 178: 176–181.PubMedGoogle Scholar
  14. Benelli, G., D. Otranto, A. Caselli, D. Romano, D. Remorini, G. Di Giuseppe, C. Stefanini, M. Mele & A. Canale, 2018b. High innate attractiveness to black targets in the blue blowfly, Calliphora vomitoria (L.) (Diptera: Calliphoridae). Acta Tropica 182: 144–148.PubMedGoogle Scholar
  15. Berglund, A., A. Bisazza & A. Pilastro, 1996. Armaments and ornaments: an evolutionary explanation of traits of dual utility. Biological Journal of the Linnean Society 58: 385–389.Google Scholar
  16. Bischoff, R. J., J. L. Gould & D. I. Rubenstein, 1985. Tail size and female choice in the guppy (Poecilia reticulata). Behavioural Ecology and Sociobiology 17: 253–255.Google Scholar
  17. Blakeslee, C., S. P. McRobert, A. C. Brown & E. D. Clotfelter, 2009. The effect of body colouration and group size on social partner preferences in female fighting fish (Betta splendens). Behavioural Processes 80(2): 157–161.PubMedGoogle Scholar
  18. Bonnet, F., Y. Kato, J. Halloy & F. Mondada, 2015. Infiltrating the Zebrafish Swarm: Design, Implementation and Experimental Tests of a Miniature Robotic Fish Lure for Fish-Robot Interaction Studies In: SWARM 2015: The First International Symposium on Swarm Behavior and Bio-Inspired Robotics (No. EPFL-CONF 210879).
  19. Borgia, G. & S. W. Coleman, 2000. Co-option of male courtship signals from aggressive display in bowerbirds. Proceedings of the Royal Society of London B: Biological Sciences 267: 869–874.Google Scholar
  20. Bradbury, J. W., & S. L. Vehrencamp, 2011. Principles of animal communication.Google Scholar
  21. Bronstein, P. M., 1984. Agonistic and reproductive interactions in Betta splendens. Journal of Comparative Psychology 98: 421–431.PubMedGoogle Scholar
  22. Bruce, M., T. Doherty, J. Kaplan, C. Sutherland & J. Atema, 2018. American lobsters, Homarus americanus, use vision for initial opponent evaluation and subsequent memory. Bulletin of Marine Science. Scholar
  23. Butail, S., T. Bartolini & M. Porfiri, 2013. Collective response of zebrafish shoals to a free-swimming robotic fish. PLos ONE 8(10): e76123.PubMedPubMedCentralGoogle Scholar
  24. Cantalupo, C., A. Bisazza & G. Vallortigara, 1996. Lateralization of displays during aggressive and courtship behaviour in the Siamese fighting fish (Betta splendens). Physiology and Behaviour 60(1): 249–252.Google Scholar
  25. Clotfelter, E. D., L. J. Curren & C. E. Murphy, 2006. Mate choice and spawning success in the fighting fish Betta splendens the importance of body size display behavior and nest size. Ethology 112(12): 1170–1178.Google Scholar
  26. Clotfelter, E. D., D. R. Ardia & K. J. McGraw, 2007. Red fish, blue fish: trade-offs between pigmentation and immunity in Betta splendens. Behavioural Ecology 18(6): 1139–1145.Google Scholar
  27. Darwin, C., 1871. The descent of man and selection in relation to sex. John Murray, London.Google Scholar
  28. Donati, E., M. Worm, S. Mintchev, M. Van Der Wiel, G. Benelli, G. Von Der Emde & C. Stefanini, 2016. Investigation of collective behaviour and electrocommunication in the weakly electric fish, Mormyrus rume, through a biomimetic robotic dummy fish. Bioinspiration and Biomimimetics 11(6): 066009.Google Scholar
  29. Doutrelant, C., P. K. McGregor & R. F. Oliveira, 2001. The effect of an audience on intrasexual communication in male Siamese fighting fish, Betta splendens. Behavioural Ecology 12(3): 283–286.Google Scholar
  30. Dzieweczynski, T. L. & L. M. Forrette, 2013. Reproductive state but not recent aggressive experience influences behavioral consistency in male Siamese fighting fish. Acta Ethologica 16(1): 31–40.Google Scholar
  31. Dzieweczynski, T. L., A. M. Bessler, D. S. Shelton & W. J. Rowland, 2006. Effect of a dummy audience on male–male interactions in Siamese fighting fish, Betta splendens. Ethology 112(2): 127–133.Google Scholar
  32. Dzieweczynski, T. L., C. E. Gill & C. E. Perazio, 2012. Opponent familiarity influences the audience effect in male–male interactions in Siamese fighting fish. Animal Behaviour 83(5): 1219–1224.Google Scholar
  33. Gribovskiy, A., F. Mondada, J. Halloy & J. L. Deneubourg, 2010. The PoulBot: a mobile robot for ethological studies on domestic chickens. AI Inspired Biology 62: 2.Google Scholar
  34. Guilford, T. & M. S. Dawkins, 1995. What are conventional signals? Animal Behaviour 49(6): 1689–1695.Google Scholar
  35. Halloy, J., G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Saïd, V. Durier, S. Canonge, J. M. Amé, et al., 2007. Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853): 1155–1158.PubMedGoogle Scholar
  36. Halperin, J. R. P., T. Giri, J. Elliott & D. W. Dunham, 1998. Consequences of hyper-aggressiveness in Siamese fighting fish: cheaters seldom prospered. Animal Behaviour 55(1): 87–96.PubMedGoogle Scholar
  37. Hamilton, W. D. & M. Zuk, 1982. Heritable true fitness and bright birds: a role for parasites? Science 218: 384–387.PubMedGoogle Scholar
  38. Herb, B. M., S. A. Biron & M. R. Kidd, 2003. Courtship by subordinate male Siamese fighting fish, Betta splendens: their response to eavesdropping and naïve females. Behaviour 140(1): 71–78.Google Scholar
  39. Hinow, P., J. R. Strickler & J. Yen, 2017. Olfaction in a viscous environment: the “color” of sexual smells in Temora longicornis. The Science of Nature 104(5–6): 46.PubMedGoogle Scholar
  40. Höglund, J. & A. Lundberg, 1987. Sexual selection in a monomorphic lek-breeding bird: correlates of male mating success in the great snipe Gallinago media. Behavioural Ecology and Sociobiology 21: 211–216.Google Scholar
  41. Hsu, Y., R. L. Earley & L. L. Wolf, 2006. Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biological Reviews of the Cambridge Phylosophical Society 81: 33–74.Google Scholar
  42. Hurd, P. L. & M. Enquist, 2005. A strategic taxonomy of biological communication. Animal Behaviour 70(5): 1155–1170.Google Scholar
  43. Ijspeert, A. J., A. Crespi & J. M. Cabelguen, 2005. Simulation and robotics studies of salamander locomotion. Neuroinformatics 3(3): 171–195.PubMedGoogle Scholar
  44. Jaroensutasinee, M. & K. Jaroensutansinee, 2001. Bubble nest habitat characteristics of wild Siamese fighting fish. Journal of Fish Biology 58(5): 1311–1319.Google Scholar
  45. Jaroensutasinee, M. & K. Jaroensutasinee, 2001. Sexual size dimorphism and male contest in wild Siamese fighting fish. Journal of Fish Biology 59: 1614–1621.Google Scholar
  46. Katzschmann, R. K., J. DelPreto, R. MacCurdy & D. Rus, 2018. Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics 3(16): eaar3449.Google Scholar
  47. Kawabata, K., H. Aonuma, S. Takahashi, K. Hosoda & J. Xue, 2014. Image-Based Pose Estimation for Analyzing Cricket-Robot Interaction Behavior. Journal of Signal Processing Systems 18(3): 135–141.Google Scholar
  48. Kiørboe, T., A. Visser & K. H. Andersen, 2018. A trait-based approach to ocean ecology. ICES Journal of Marine Science. Scholar
  49. Kopman, V. & M. A. Porfiri, 2011. Miniature and Low-Cost Robotic Fish for Ethorobotics Research and Engineering Education. I – Bioinspired Design. In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, pp. 209–216. American Society of Mechanical Engineers.
  50. Kopman, V., J. Laut, G. Polverino & M. Porfiri, 2013. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test. Journal of the Royal Society Interface 10(78): 20120540.PubMedCentralGoogle Scholar
  51. Krause, J., A. F. Winfield & J. L. Deneubourg, 2011. Interactive robots in experimental biology. Trends in Ecology and Evolution 26(7): 369–375.PubMedGoogle Scholar
  52. Landgraf, T., H. Nguyen, J. Schröer, A. Szengel, R.J. Clément, D. Bierbach & J. Krause, 2014. Blending in with the shoal: robotic fish swarms for investigating strategies of group formation in guppies In Conference on Biomimetic and Biohybrid Systems, pp. 178–189. Springer, Cham.
  53. Landgraf, T., D. Bierbach, H. Nguyen, N. Muggelberg, P. Romanczuk & J. Krause, 2016. RoboFish: increased acceptance of interactive robotic fish with realistic eyes and natural motion patterns by live Trinidadian guppies. Bioinspiration and Biomimetics 11(1): 015001.PubMedGoogle Scholar
  54. Laschi, C., 2017. Helping robots blend into the background. Science 358(6360): 169.PubMedGoogle Scholar
  55. Maan, M. E., M. Van Der Spoel, P. Q. Jimenez, J. J. Van Alphen & O. Seehausen, 2006. Fitness correlates of male coloration in a Lake Victoria cichlid fish. Behavioral Ecology 17(5): 691–699.Google Scholar
  56. Michelsen, A., B. B. Andersen, J. Storm, W. H. Kirchner & M. Lindauer, 1992. How honeybees perceive communication dances, studied by means of a mechanical model. Behavioural Ecology and Sociobiology 30(3–4): 143–150.Google Scholar
  57. Mondada, F., A. Martinoli, N. Correll, A. Gribovskiy, J. I. Halloy, R. Siegwart & J. L. Deneubourg, 2013. A general methodology for the control of mixed natural-artificial societies (No. EPFL-CHAPTER-154840, pp. 547–586). Pan Stanford Publishing.Google Scholar
  58. Partan, S. R., 2004. Animal robots. In Bekoff, M. (ed), Encyclopedia of Animal Behavior. Westport, Greenwood: 952–955.Google Scholar
  59. Patricelli, G. L., J. A. C. Uy, G. Walsh & G. Borgia, 2002. Male displays adjusted to female’s response. Nature 415: 279–280.PubMedGoogle Scholar
  60. Patricelli, G. L., S. W. Coleman & G. Borgia, 2006. Male satin bowerbirds, Ptilonorhynchus violaceus, adjust their display intensity in response to female startling: an experiment with robotic females. Animal Behaviour 71: 49–59.Google Scholar
  61. Phamduy, P., G. Polverino, R. C. Fuller & M. Porfiri, 2014. Fish and robot dancing together: bluefin killifish females respond differently to the courtship of a robot with varying colour morphs. Bioinspiration and Biomimimetics 9(3): 036021.Google Scholar
  62. Polverino, G., N. Abaid, V. Kopman, S. Macri & M. Porfiri, 2012. Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals. Bioinspiration and Biomimetics 7(3): 036019.PubMedGoogle Scholar
  63. Polverino, G., P. Phamduy & M. Porfiri, 2013. Fish and robots swimming together in a water tunnel: robot colour and tail-beat frequency influence fish behavior. PLoS ONE 8(10): e77589.PubMedPubMedCentralGoogle Scholar
  64. Rainwater, F. L., 1967. Courtship and Reproductive Behavior of the Siamese Fighting Fish Betta splendens Regan (Pisces, Belontiidae). Proceedings of the Oklahoma Academy of Science 47: 98–114.Google Scholar
  65. Robertson, C. M. & P. F. Sale, 1975. Sexual discrimination in the Siamese fighting fish (Betta splendens Regan). Behaviour 54(1): 1–25.Google Scholar
  66. Romano, D., G. Benelli & C. Stefanini, 2017a. Escape and surveillance asymmetries in locusts exposed to a Guinea fowl-mimicking robot predator. Scientific Reports. Scholar
  67. Romano, D., G. Benelli, E. Donati, D. Remorini, A. Canale & C. Stefanini, 2017b. Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes. Scientific Reports 7: 4667.PubMedPubMedCentralGoogle Scholar
  68. Romano, D., E. Donati, G. Benelli & C. Stefanini, 2019a. A review of animal–robot interaction: from bio-hybrid organisms to mixed societies. Biological Cybernetics. Scholar
  69. Romano, D., G. Benelli & C. Stefanini, 2019b. Encoding lateralization of jump kinematics and eye use in a locust via bio-robotic artifacts. Journal of Experimental Biology. Scholar
  70. Rosenthal, G. G., C. S. Evans & W. L. Miller, 1996. Female preference for dynamic traits in the green swordtail, Xiphophorus helleri. Animal Behaviour 51: 811–820.Google Scholar
  71. Rüber, L., R. Britz & R. Zardoya, 2006. Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). Systems Biology 55: 374–397.Google Scholar
  72. Ruberto, T., V. Mwaffo, S. Singh, D. Neri & M. Porfiri, 2016. Zebrafish response to a robotic replica in three dimensions. Royal Society Open Science 3(10): 160505.PubMedPubMedCentralGoogle Scholar
  73. Ruberto, T., G. Polverino & M. Porfiri, 2017. How different is a 3D-printed replica from a conspecific in the eyes of a zebrafish? Journal of the Experimental Analysis of Behaviour 107(2): 279–293.Google Scholar
  74. Schmickl, T., M. Szopek, M. Bodi, S. Hashold, G. Radspieler, R. Thenius, S. Bogdan, D. Miklic’, K. Griparic’, T. Haus, et al., 2013. ASSISI: Charged Hot Bees Shakin’in the Spotlight. In 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems, pp. 259–260. IEEE.
  75. Shi, Q., H. Ishii, Y. Sugahara, A. Takanishi, Q. Huang & T. Fukuda, 2015. Design and control of a biomimetic robotic rat for interaction with laboratory rats. IEEE/ASME Transactions on Mechatronics 20(4): 1832–1842.Google Scholar
  76. Shine, R., T. Langkilde & R. T. Mason, 2003. Cryptic forcible insemination: male snakes exploit female physiology, anatomy, and behavior to obtain coercive matings. The American Naturalist 162: 653–667.PubMedGoogle Scholar
  77. Sichlau, M. H., E. E. Nielsen, U. H. Thygesen & T. Kiørboe, 2015. Mating success and sexual selection in a pelagic copepod, Temora longicornis: evidence from paternity analyses. Limnology and Oceanography 60(2): 600–610.Google Scholar
  78. Simpson, M. J., 1968. The display of the Siamese fighting fish, Betta splendens. Animal Behaviour Monographs 1: i–73.Google Scholar
  79. Spinello, C., S. Macri & M. Porfiri, 2013. Acute ethanol administration affects zebrafish preference for a biologically inspired robot. Alcohol 47(5): 391–398.PubMedGoogle Scholar
  80. Stefanini, C., S. Orofino, L. Manfredi, S. Mintchev, S. Marrazza, T. Assaf, L. Capantini, E. Sinibaldi, S. Grillner, P. Wallén, et al., 2012. A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspiration and Biomimetics 7(2): 025001.PubMedGoogle Scholar
  81. Svensson, P. A. & B. B. M. Wong, 2011. Carotenoid-based signals in behavioural ecology: a review. Behaviour 148(2): 131–189.Google Scholar
  82. Tate, M., R. E. McGoran, C. R. White & S. J. Portugal, 2017. Life in a bubble: the role of the labyrinth organ in determining territory, mating and aggressive behaviours in anabantoids. Journal of Fish Biology 91(3): 723–749.PubMedGoogle Scholar
  83. Todd, D., 1993. Mobile robots-the lessons from nature. Robots and Biological Systems. Scholar
  84. Vershinin, A., 1999. Biological functions of carotenoid diversity and evolution. Biofactors 10(2–3): 99–104.PubMedGoogle Scholar
  85. Webb, B., 1995. Using robots to model animals: a cricket test. Robotics and Autonomous Systems 16(2–4): 117–134.Google Scholar
  86. Wikelski, M., C. Carbone, P. A. Bednekoff, S. Choudhury & S. Tebbich, 2001. Why is female choice not unanimous? Insights from costly mate sampling in marine iguanas. Ethology 107: 623–638.Google Scholar
  87. Wood, R. J., 2008. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics 24(2): 341–347.Google Scholar
  88. Worm, M., T. Landgraf, H. Nguyen & G. von der Emde, 2014. Electro-communicating Dummy Fish Initiate Group Behavior in the Weakly Electric Fish Mormyrus rume. In Conference on Biomimetic and Biohybrid Systems, pp. 446–448. Springer International Publishing.
  89. Worm, M., F. Kirschbaum & G. von der Emde, 2017. Social interactions between live and artificial weakly electric fish: electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish. Plos One 12(9): e0184622.PubMedPubMedCentralGoogle Scholar
  90. Zahavi, A., 1975. Mate selection – a selection for a handicap. Journal of Theoretical Biology 53: 205–214.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The BioRobotics Institute, Sant’Anna School of Advanced StudiesPisaItaly
  2. 2.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  3. 3.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan
  4. 4.Healthcare Engineering Innovation Center (HEIC)Khalifa UniversityAbu DhabiUnited Arab Emirates

Personalised recommendations