Skip to main content
Log in

Reproductive isolation, morphological and ecological differentiation among cryptic species of Euchlanis dilatata, with the description of four new species

  • ROTIFERA XV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Morphological approaches may not provide sufficient resolution for species delineation. Thus, we used an integrated approach that included molecular and ecological characters as well as morphological features to gain a better estimate of species diversity and to improve our understanding of the speciation process within rotifers. Previously, seven putative cryptic species were found within Euchlanis dilatata complex based on a nuclear marker. Here, we investigated reproductive isolation, variation in trophi morphology, and life history characteristics among representatives of some of these species. Mating success between each cryptic species was 0–1.1%; lower than that of positive controls (intra-clonal: 15.6–43.9%). SEM trophi images representing individuals from all seven lineages were used for morphometric analyses. Using Discriminant Analysis, 64% of individuals were correctly assigned to cryptic species. Five clonal lineages, each representing a putative species, were used in life table experiments with varying temperature and conductivity. Age-specific fecundity increased under high temperature and life expectancy decreased under high temperature and high conductivity. There was variation among cryptic species in some life table characteristics, such as life expectancy and generation time. Applying an integrative taxonomy approach, we examined the boundaries between E. dilatata cryptic species and described four of them as new species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamkiewicz-Chojnacka, B., 1988. The genus Euchlanis (Rotatoria) in brackish waters of the Vistula Lagoon (Southern Baltic). Oceanologia 26: 7–103.

    Google Scholar 

  • Addison, J. A. & J. H. Kim, 2018. Cryptic species diversity and reproductive isolation among sympatric lineages of Strongylocentrotus sea urchins in the northwest Atlantic. FACETS 3: 61–78.

    Google Scholar 

  • Anitha, P. S. & R. M. George, 2006. The taxonomy of Brachionus plicatilis species complex (Rotifera: Monogononta) from the Southern Kerala (India) with a note on their reproductive preferences. Journal of the Marine Biological Association of India 48: 6–13.

    Google Scholar 

  • Arias-Almeida, J. C. & R. Rico-Martínez, 2011. Toxicity of cadmium, lead, mercury and methyl parathion on Euchlanis dilatata Ehrenberg 1832 (Rotifera: Monogononta). Bulletin of Environmental Contamination and Toxicology 87: 138–142.

    CAS  PubMed  Google Scholar 

  • Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155.

    PubMed  Google Scholar 

  • Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lake-water ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. International Journal of Salt Lake Research 5: 1–15.

    Google Scholar 

  • Brower, A. V. Z., 2010. Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: Names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Systematics and Biodiversity 8: 485–491.

    Google Scholar 

  • Campillo, S., E. M. García-Roger, D. Martínez-Torres & M. Serra, 2005. Morphological stasis of two species belonging to the L-morphotype in the Brachionus plicatilis species complex. Hydrobiologia 546: 181–187.

    Google Scholar 

  • Carmona, M. J., A. Gómez & M. Serra, 1995. Mictic patterns of the rotifer Brachionus plicatilis in small ponds. Hydrobiologia 313(314): 365–371.

    Google Scholar 

  • Celewicz-Goldyn, S. & N. Kuczynska-Kippen, 2017. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS ONE 12: e0177317. .

    PubMed  PubMed Central  Google Scholar 

  • Çelik, K. & T. Ongun, 2007. The relationships between certain physical and chemical variables and the seasonal dynamics of phytoplankton assemblages of two inlets of a shallow hypertrophic lake with different nutrient inputs. Environmental Monitoring and Assessment 124: 321–330.

    PubMed  Google Scholar 

  • Cieplinski, A., U. Obertegger & T. Weisse, 2018. Life history traits and demographic parameters in the Keratella cochlearis (Rotifera, Monogononta) species complex. Hydrobiologia 811: 325–338.

    Google Scholar 

  • Ciros-Pérez, J., A. Gómez & M. Serra, 2001. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23: 1311–1328.

    Google Scholar 

  • Cruickshank, R. H., 2002. Molecular markers for the phylogenetics of mites and ticks. Systematic & Applied Acarology 7: 3–14.

    Google Scholar 

  • Dayrat, B., 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407–415.

    Google Scholar 

  • Delić, T., P. Trontelj, M. Rendoš & C. Fišer, 2017. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Scientific Reports 7: 3391.

    PubMed  PubMed Central  Google Scholar 

  • Dennis, A. B. & M. E. Hellberg, 2010. Ecological partitioning among parapatric cryptic species. Molecular Ecology 19: 3206–3225.

    PubMed  Google Scholar 

  • Ehrenberg, C. G., 1830. Organisation, systematik und geographisches serhältnis der infusionsthierchen. Zwei vorträge in der Akademie der Wissenschaften zu Berlin gehalten in den Jahren 1828 [Die geographische verbreitung der infusionsthierchen in Nord-Afrika und West-Asien, beobachtet auf Hemprich und Ehrenbergs Reisen] und 1830 [Beiträge zur kenntnis der organisation der infusorien und ihrer geographischen verbreitung, besonders in Sibirien]. Druckerei der königlichen Akademie der Wissenschaften, Berlin. 108 pp. In German.

  • Espinosa-Rodríguez, C. A., S. S. S. Sarma & S. Nandini, 2012. Interactions between the rotifer Euchlanis dilatata and the cladocerans Alona glabra and Macrothrix triserialis in relation to diet type. Limnologica 42: 50–55.

    Google Scholar 

  • Farhadian, O., L. Daghighi & E. E. Dorche, 2013. Effects of microalgae and alfalfa meal on population growth and production of a freshwater rotifer, Euchlanis dilatata (Rotifera: Mongononta). Journal of the World Aquaculture Society 44: 86–95.

    CAS  Google Scholar 

  • Fatema, K., W. M. W. Omar, M. M. Isa & A. Omar, 2016. Effects of water quality parameters on abundance and biomass of zooplankton in Merbok Estuary Malaysia. Journal of Environmental Science and Natural Resources 9: 117–122.

    Google Scholar 

  • Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.

    CAS  PubMed  Google Scholar 

  • Fontaneto, D., J. F. Flot & C. Q. Tang, 2015. Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity 45: 433–451.

    Google Scholar 

  • Fontaneto, D., I. Giordani, G. Melone & M. Serra, 2007a. Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583: 297–307.

    Google Scholar 

  • Fontaneto, D., E. A. Herniou, T. G. Barraclough, C. Ricci & G. Melone, 2007b. On the reality and recognisability of asexual organisms: morphological analysis of the masticatory apparatus of bdelloid rotifers. Zoologica Scripta 36: 361–370.

    Google Scholar 

  • Fontaneto, D., M. Kaya, E. A. Herniou & T. G. Barraclough, 2009. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53: 182–189.

    CAS  PubMed  Google Scholar 

  • Fouet, C., C. Kamdem, S. Gamez & B. J. White, 2017. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evolutionary Applications 10: 897–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Y., K. Hirayama & Y. Natsukari, 1991. Morphological differences between two types of the rotifer Brachionus plicatilis O.F. Müller. Journal of Experimental Marine Biology and Ecology 151: 29–41.

    Google Scholar 

  • Gabaldón, C., M. Serra, M. J. Carmona & J. Montero-Pau, 2015. Life-history traits, abiotic environment and coexistence: the case of two cryptic rotifer species. Journal of Experimental Marine Biology and Ecology 465: 142–152.

    Google Scholar 

  • Galkovskaja, G. A., 1987. Planktonic rotifers and temperature. Hydrobiologia 147: 307–317.

    Google Scholar 

  • Gilbert, J. J., 2004. Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology 49: 1505–1515.

    Google Scholar 

  • Gilbert, J. J. & E. J. Walsh, 2005. Brachionus calyciflorus is a species complex: mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546: 257–265.

    CAS  Google Scholar 

  • Gillooly, J. F., 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22: 241–251.

    Google Scholar 

  • Gómez, A. & T. W. Snell, 1996. Sibling species and cryptic speciation in the Brachionus plicatilis species complex (Rotifera). Journal of Evolutionary Biology 9: 953–964.

    Google Scholar 

  • Gómez, A., M. Temprano & M. Serra, 1995. Ecological genetics of a cyclical parthenogen in temporary habitats. Journal of Evolutionary Biology 622: 601–622.

    Google Scholar 

  • Gorokhova, E., 2017. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth. Royal Society Open Science 4: 160810.

    PubMed  PubMed Central  Google Scholar 

  • Gribble, K. E. & D. B. Mark Welch, 2012. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex. BMC Evolutionary Biology 12: 134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, D. S., H. U. Dahms, H. Park & J. S. Lee, 2013. A new intertidal Brachionus and intrageneric phylogenetic relationships among Brachionus as revealed by allometry and CO1-ITS1 gene analysis. Zoological Studies 52: 13.

    Google Scholar 

  • IBM Corp, 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.

  • International Commission on Zoological Nomenclature, 1999. International Code of Zoological Nomenclature, 4th ed. International Trust for Zoological Nomenclature, London.

    Google Scholar 

  • Johnson, S. B., A. Warén, V. Tunnicliffe, C. Van Dover, C. G. Wheat, T. F. Schultz & R. C. Vrijenhoek, 2015. Molecular taxonomy and naming of five cryptic species of Alviniconcha snails (Gastropoda: Abyssochrysoidea) from hydrothermal vents. Systematics and Biodiversity 13: 278–295.

    Google Scholar 

  • Johnston, R. K. & T. W. Snell, 2016. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): thermodynamics or gene regulation? Experimental Gerontology 78: 12–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jörger, K. M. & M. Schrödl, 2013. How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10: 59.

    PubMed  PubMed Central  Google Scholar 

  • Katoh, K. & D. M. Standley, 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya, M., E. A. Herniou, T. G. Barraclough & D. Fontaneto, 2009. Inconsistent estimates of diversity between traditional and DNA taxonomy in bdelloid rotifers. Organisms Diversity and Evolution 9: 3–12.

    Google Scholar 

  • King, C. E., 1977. Genetics of reproduction, variation and adaptation in rotifers. Archiv für Hydrobiologie 8: 187–201.

    Google Scholar 

  • Kirk, K. L., 1997. Life-history responses to variable environments: starvation and reproduction in planktonic rotifers. Ecology 78: 434–441.

    Google Scholar 

  • Kordbacheh, A., G. Garbalena & E. J. Walsh, 2017. Population structure and cryptic species in the cosmopolitan rotifer Euchlanis dilatata. Zoological Journal of the Linnean Society 181: 757–777.

    Google Scholar 

  • Kotani, T., A. Hagiwara & T. Snell, 1997. Genetic variation among marine Brachionus strains and function of mate recognition pheromone (MRP). Hydrobiologia 358: 105–112.

    CAS  Google Scholar 

  • Leasi, F., C. Q. Tang, W. H. De Smet & D. Fontaneto, 2013. Cryptic diversity with wide salinity tolerance in the putative euryhaline Testudinella clypeata (Rotifera, Monogononta). Zoological Journal of the Linnean Society 168: 17–28.

    Google Scholar 

  • Lee, C. E., 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54: 2014–2027.

    CAS  PubMed  Google Scholar 

  • Li, L., C. Niu & R. Ma, 2010. Rapid temporal succession identified by COI of the rotifer Brachionus calyciflorus Pallas in Xihai Pond, Beijing, China, in relation to ecological traits. Journal of Plankton Research 32: 951–959.

    CAS  Google Scholar 

  • Liu, J., M. Möller, J. Provan, L. M. Gao, R. C. Poudel & D. Z. Li, 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytologist 199: 1093–1108.

    PubMed  Google Scholar 

  • Luo, Z., W. Yang, C. P. Leaw, V. Pospelova, G. Bilien, G. R. Liow, P. T. Lim & H. Gu, 2017. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 66: 88–96.

    PubMed  Google Scholar 

  • Ma, Q., Y. L. Xi, J. Y. Zhang, X. L. Wen & X. L. Xiang, 2010. Differences in life table demography among eight geographic populations of Brachionus calyciflorus (Rotifera) from China. Limnologica 40: 16–22.

    Google Scholar 

  • Malekzadeh-Viayeh, R., H. Mohammadi & A. B. Shafiei, 2010. Population growth of six Iranian Brachionus rotifer strains in response to salinity and food type. International Review of Hydrobiology 95: 461–470.

    Google Scholar 

  • Malekzadeh-Viayeh, R., R. Pak-Tarmani, N. Rostamkhani & D. Fontaneto, 2014. Diversity of the rotifer Brachionus plicatilis species complex (Rotifera: Monogononta) in Iran through integrative taxonomy. Zoological Journal of the Linnean Society 170: 233–244.

    Google Scholar 

  • Michaloudi, E., S. Mills, S. Papakostas, C. P. Stelzer, A. Triantafyllidis, I. Kappas, K. Vasileiadou, K. Proios & T. J. Abatzopoulos, 2016. Morphological and taxonomic demarcation of Brachionus asplanchnoidis Charin within the Brachionus plicatilis cryptic species complex (Rotifera, Monogononta). Hydrobiologia 796: 19–37.

    Google Scholar 

  • Michaloudi, E., S. Papakostas, G. Stamou, V. Neděla, E. Tihlaříková, W. Zhang & S. A. Declerck, 2018. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS ONE 13: e0203168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills, S., J. A. Alcantara-Rodriguez, J. Ciros-Pérez, A. Gόmez, A. Hagiwara, K. Hinson Galindo, C. Jersabek, R. Malekzadeh-Viayeh, F. Leasi, J. Lee, D. B. Mark Welch, S. Papakostas, S. Riss, H. Segers, M. Serra, R. Shiel, R. Smolak, T. W. Snell, C. Stelzer, C. Q. Tang, R. L. Wallace, D. Fontaneto & E. J. Walsh, 2017. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796: 39–58.

    CAS  Google Scholar 

  • Miracle, M. R. & M. Serra, 1989. Salinity and temperature influence in rotifer life history characteristics. Hydrobiologia 52: 81–102.

    Google Scholar 

  • Montero-Pau, J., E. Ramos-Rodríguez, M. Serra & A. Gómez, 2011. Long-term coexistence of rotifer cryptic species. PLoS ONE 6: e21530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nandini, S., S. S. S. Sarma & H. J. Dumont, 2011. Predatory and toxic effects of the turbellarian (Stenostomum cf leucops) on the population dynamics of Euchlanis dilatata, Plationus patulus (Rotifera) and Moina macrocopa (Cladocera). Hydrobiologia 662: 171–177.

    CAS  Google Scholar 

  • Neil, W. E., 1984. Regulation of rotifer densities by crustacean zooplankton in an oligotrophic montane lake in British Columbia. Oecologia 61: 175–181.

    Google Scholar 

  • Obertegger, U., D. Fontaneto & G. Flaim, 2012. Using DNA taxonomy to investigate the ecological determinants of plankton diversity: Explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshwater Biology 57: 1545–1553.

    Google Scholar 

  • Obertegger, U., G. Flaim & D. Fontaneto, 2014. Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshwater Biology 59: 2413–2427.

    Google Scholar 

  • Ogello, E. O., H. J. Kim, K. Suga & A. Hagiwara, 2016. Lifetable demography and population growth of the rotifer Brachionus angularis in Kenya: Influence of temperature and food density. African Journal of Aquatic Science 41: 329–336.

    Google Scholar 

  • Ortells, R., A. Gomez & M. Serra, 2003. Coexistence of cryptic rotifer species: ecological and genetic characteristics of Brachionus plicatilis. Freshwater Biology 48: 2194–2202.

    Google Scholar 

  • Packer, L., J. Gibbs, C. Sheffield & R. Hanner, 2009. DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources 9: 42–50.

    PubMed  Google Scholar 

  • Pan, L., Y. L. Xi, Z. C. Li, Q. Q. Zhao & Z. Hu, 2016. Effects of mercury on the life table demography of the rotifer Brachionus calyciflorus under different algal food (Scenedesmus obliquus) densities. Acta Ecologica Sinica 36: 218–223.

    Google Scholar 

  • Papakostas, S., E. Michaloudi, A. Triantafyllidis, I. Kappas & T. J. Abatzopoulos, 2013. Allochronic divergence and clonal succession: two microevolutionary processes sculpturing population structure of Brachionus rotifers. Hydrobiologia 700: 33–45.

    Google Scholar 

  • Papakostas, S., E. Michaloudi, K. Proios, M. Brehm, L. Verhage, J. Rota, C. Peña, G. Stamou, V. L. Pritchard, D. Fontaneto & S. A. Declerck, 2016. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Systematic Biology 65: 508–524.

    PubMed  Google Scholar 

  • Parise, A., 1966. The genus Euchlanis (Rotatoria) in the marsh of Fucecchio (Central Italy) with description of a new species. Hydrobiologia 27: 328–337.

    Google Scholar 

  • Pavón-Meza, E. L., S. S. S. Sarma & S. Nandini, 2005. Combined effects of algal (Chlorella vulgaris) food level and temperature on the demography of Brachionus havanaensis (Rotifera): a life table study. Hydrobiologia 546: 353–360.

    Google Scholar 

  • Pfenninger, M. & C. Nowak, 2008. Reproductive isolation and ecological niche partition among larvae of the morphologically cryptic sister species Chironomus riparius and C. piger. PLoS ONE 3: e2157.

    PubMed  PubMed Central  Google Scholar 

  • Ramírez-Pérez, T., S. S. S. Sarma & S. Nandini, 2004. Effects of mercury on the life table demography of the rotifer Brachionus calyciflorus Pallas (Rotifera). Ecotoxicology 13: 535–544.

    PubMed  Google Scholar 

  • Rico-Martinez, R. & T. W. Snell, 1995. Mating behavior and mate recognition pheromone blocking of male receptors in Brachionus plicatilis Müller (Rotifera). Hydrobiologia 313: 105–110.

    Google Scholar 

  • Ríos-Arana, J. V., E. J. Walsh & M. Ortiz, 2007. Interaction effects of multi-metal solutions (As, Cr, Cu, Ni, Pb and Zn) on life history traits in the rotifer Plationus patulus. Journal of Environmental Science and Health Part A 42: 1473–1481.

    Google Scholar 

  • Rissler, L. J. & J. J. Apodaca, 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic Biology 56: 924–942.

    PubMed  Google Scholar 

  • Rose, J. M., N. M. Vora, P. D. Countway, R. J. Gast & D. A. Caron, 2008. Effects of temperature on growth rate and gross growth efficiency of an Antarctic bacterivorous protist. Multidisciplinary Journal of Microbial Ecology 3: 252–260.

    Google Scholar 

  • R Core Team, 2017. R: A language and environment for statistical computing. https://www.R-project.org/.

  • RStudio Team, 2016. RStudio: integrated development for R. Rstudio. RStudio, Inc., Boston, MA. http://www.rstudio.com/.

  • Santos Medrano, G. E., D. Robles, S. Hernandez Flores & R. Rico Martinez, 2016. Life table demography of Asplanchna brightwellii Gosse, 1850 fed with five different prey items. Hydrobiologia 796: 169–179.

    Google Scholar 

  • Sarma, S. S. S., S. Nandini, J. L. Gama-Flores & M. A. Fernandez-Araiza, 2001. Population growth of Euchlanis dilatata (Rotifera): combined effects of methyl parathion and food (Chlorella vulgaris). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes 36: 43–54.

    CAS  Google Scholar 

  • Saucedo-Ríos, S., G. E. Santos-Medrano & R. Rico-Martínez, 2017. Life table analysis reveals variation in thermal tolerance among three species of the Lecane genus (Rotifera: Monogononta). Annales de Limnologie-International Journal of Limnology 53: 253–259.

    Google Scholar 

  • Schluter, D., 2001. Ecology and the origin of species. Trends in Ecology & Evolution 16: 372–380.

    CAS  Google Scholar 

  • Schröder, T. & E. J. Walsh, 2007. Cryptic speciation in the cosmopolitan Epiphanes senta complex (Monogononta, Rotifera) with the description of new species. Hydrobiologia 593: 129–140.

    Google Scholar 

  • Schröder, T. & E. J. Walsh, 2010. Genetic differentiation, behavioural reproductive isolation and mixis cues in three sibling species of monogonont rotifers. Freshwater Biology 55: 2570–2584.

    PubMed  PubMed Central  Google Scholar 

  • Segers, H., 1993. Rotifera of some lakes in the floodplain of the River Niger (Imo State, Nigeria). I. New species and other taxonomic considerations. Hydrobiologia 250: 39–61.

    Google Scholar 

  • Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.

    Google Scholar 

  • Segers, H., W. H. D. Smet, C. Fischer, D. Fontaneto, E. Michaloudi, R. L. Wallace & C. D. Jersabek, 2012. Towards a list of available names in zoology, partim Phylum Rotifera. Zootaxa 3179: 61–68.

    Google Scholar 

  • Soto, D. & P. Rios, 2006. Influence of trophic status and conductivity on zooplankton composition in lakes and ponds of Torres del Paine National Park (Chile). Biologia 61: 541–546.

    CAS  Google Scholar 

  • Sousa, W., J. L. Attayde, E. D. S. Rocha & E. M. Eskinazi-Sant’Anna, 2008. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. Journal of Plankton Research 30: 699–708.

    Google Scholar 

  • Stelzer, C. P., 2002. Phenotypic plasticity of body size at different in a planktonic rotifer : mechanisms temperatures and adaptive significance. Functional Ecology 16: 835–841.

    Google Scholar 

  • Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Canadian Journal of Fisheries and Aquatic Sciences 38: 721–724.

    Google Scholar 

  • Suatoni, E., S. Vicario, S. Rice, T. Snell & A. Caccone, 2006. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: The rotifer Brachionus plicatilis. Molecular Phylogenetics and Evolution 41: 86–98.

    CAS  PubMed  Google Scholar 

  • Vilas, R., C. D. Criscione & M. S. Blouin, 2005. A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131: 839–846.

    CAS  PubMed  Google Scholar 

  • Wallace, R. L. & T. W. Snell, 2014. Rotifera. In Thorp, J. H. & A. Covich (eds), Ecology and classifications of North American freshwater invertebrates. Academic Press, San Diego.

    Google Scholar 

  • Walsh, E. J., 1992. Ecological and genetics aspects of the population biology of the littoral rotifer Euchlanis dilatata. Ph.D. Dissertation, University of Nevada, Las Vegas.

  • Walsh, E. J. & L. Zhang, 1992. Polyploidy and body size variation in a natural population of the rotifer Euchlanis dilatata. Journal of Evolutionary Biology 5: 345–353.

    Google Scholar 

  • Walsh, E. J., T. Schröder, R. L. Wallace, J. V. Ríos-Arana & R. Rico-Martínez, 2008. Rotifers from selected inland saline waters in the Chihuahuan Desert of Mexico. Saline Systems 30: 1046–1050.

    Google Scholar 

  • Wang, X. L., X. L. Xiang, M. N. Xia, Y. Han, L. Huang & Y. L. Xi, 2014. Differences in life history characteristics between two sibling species in Brachionus calyciflorus complex from tropical shallow lakes. Annales De Limnologie-International Journal of Limnology 50: 289–298.

    Google Scholar 

  • Wiwegweaw, A., K. Seki, H. Mori & T. Asami, 2009. Asymmetric reproductive isolation during simultaneous reciprocal mating in pulmonates. Biology Letters 5: 240–243.

    PubMed  PubMed Central  Google Scholar 

  • Xiang, X. L., Y. L. Xi, J. Y. Zhang, Q. Ma & X. L. Wen, 2010. Effects of temperature on survival, reproduction, and morphotype in offspring of two Brachionus calyciflorus (rotifera) morphotypes. Journal of Freshwater Ecology 25: 9–18.

    Google Scholar 

  • Xiang, X. L., Y. L. Xi, X. L. Wen, G. Zhang, J. X. Wang & K. Hu, 2011. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Molecular Ecology 20: 3027–3044.

    PubMed  Google Scholar 

  • Zhang, G., Y. Xi, Y. Xue, X. Xiang & X. Wen, 2015. Ecotoxicology and environmental safety Coal fly ash effluent affects the distributions of Brachionus calyciflorus sibling species. Ecotoxicology and Environmental Safety 112: 60–67.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants from the National Science Foundation (DEB 0516032, 1257068), Grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH), Sigma Xi Grants-in-Aid of Research (G2012162274) and UTEP’s Dodson Research Grant (2014, 2015). Howard Hughes Medical Institute SPN01136 (52008125) provided funding to AK during manuscript preparation. Special thanks to Marcela Rivero-Estens and Robert Walsmith for their help in conducting life table experiments. Carl S. Lieb, Robert L. Wallace, Kevin Floyd, and S. Nandini kindly provided rotifer samples. Soyoung Jeon, UTEP BBRC Statistical Consulting Laboratory provided assistance in statistical analyses of life table data. This manuscript benefited from comments provided by three reviewers, the editors, Hendrik Segers, Robert Wallace, Michael Moody and Arshad Khan. Rotifers were collected under permits to EJ Walsh unless otherwise noted. Permits: BIBE-2006-SCI-0003, BIBE-2013-SCI-0020, VIIS-2012-SCI-007, WHSA-2006-SCI-0004, TDPW 2013-01, TDPW 2014-01, OPRD-015-14, CPDCNBSP-2016-32 (P. Brown), and under a permit from the Secretario de Medio Ambiente y Recursos Naturales #09436 (M. Silva Briano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Walsh.

Additional information

Guest editors: Steven A. J. Declerck, Diego Fontaneto, Rick Hochberg & Terry W. Snell / Crossing Disciplinary Borders in Rotifer Research

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordbacheh, A., Shapiro, A.N. & Walsh, E.J. Reproductive isolation, morphological and ecological differentiation among cryptic species of Euchlanis dilatata, with the description of four new species. Hydrobiologia 844, 221–242 (2019). https://doi.org/10.1007/s10750-019-3892-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3892-0

Keywords

Navigation