, Volume 833, Issue 1, pp 81–93 | Cite as

Dynamics of spatiotemporal heterogeneity of cyanobacterial blooms in large eutrophic Lake Taihu, China

  • Wei Li
  • Boqiang QinEmail author
Primary Research Paper


Cyanobacterial blooms caused by eutrophication in Lake Taihu, China are recognized as highly heterogeneous spatiotemporally. It is assumed that the high spatiotemporal heterogeneity of algal blooms is determined by divergence/convergence processes in the fluid medium. To address this issue, three episodes of the dominant spatial patterns of hourly simulated divergence fields of current in Lake Taihu in July of 2012 were analyzed using a hydrodynamic numerical model combined with the Empirical Orthogonal Function (EOF) method. The results showed that, on days that blooms occurred, the first two EOF modes explained 89.4% of the variability and the dominant spatial patterns of stronger convergence zones were in agreement with the regions of bloom occurrence and accumulation. When no blooms occurred, the first EOF mode explained 72.5% of the variability and divergence zones were dominant in the lake. Both the simulated hourly average divergence field and the first EOF mode in the time interval in which blooms occurred further confirmed that blooms accumulate in the current convergence zones. These findings explain the dynamic mechanism of occurrence of cyanobacterial blooms and will facilitate forecasting of short-term blooms for protecting drinking water supplies and managing risk.


Cyanobacterial bloom Convergence and divergence EOF analysis Hydrodynamic influence Lake Taihu 



We thank the Taihu Laboratory for Lake Ecosystem Research (TLLER) for providing wind data, and Lake-Watershed Science Data Center, National Earth System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China and Dr. Kun Shi for providing remote sensing images. This work was jointly supported by the National Natural Science Foundation of China (41471401, Grant 41661134036), the Major Projects on Control and Rectification of Water Body Pollution (2017ZX07203-001), and the Key Program of Nanjing Institute of Geography and Limnology, CAS (NIGLAS2017GH04). We thank Jeremy Kamen, MSc, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.


  1. Anastasiou, K. & C. Chan, 1997. Solution of the 2D shallow water equations using the finite-volume method on unstrctured triangular meshes. International Journal for Numerical Methods in Fluids 24: 1225–1245.CrossRefGoogle Scholar
  2. Beletsky, D., J. Saylor & D. Schwab, 1999. Mean circulation in the great lakes. Journal of Great Lakes Research 25(1): 78–93.CrossRefGoogle Scholar
  3. Björnsson, H. & S. Venegas, 1997. A Manual for EOF and SVD Analyses of Climatic Data. Center for Climate and Global Change Research, McGill University, Montreal.Google Scholar
  4. Botte, V. & D. Mansutti, 2012. A numerical estimate of the plankton-induced sea surface tension effects in a Langmuir circulation. Mathematics and Computers in Simulation 82: 2916–2928.CrossRefGoogle Scholar
  5. Brookes, J. & C. Carey, 2011. Resilience to blooms. Science 334: 46–47.CrossRefGoogle Scholar
  6. Cao, H., F. Kong, L. Luo, X. Shi & Z. Yang, 2006. Effects of wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. Journal of Freshwater Ecology 21(2): 231–238.CrossRefGoogle Scholar
  7. Castellanos, P., J. Pelegri & A. Benazzouz, 2013. Wind-driven surface circulation in the Cape Blanc region. Continental Shelf Research 60: 87–103.CrossRefGoogle Scholar
  8. Chen, Y., 1990. Fluid Dynamics. Hohai University Press, Nanjing. (in Chinese).Google Scholar
  9. Diaz, R. & R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle Scholar
  10. Dick, E., 1994. Introduction to finite-volume techniques in computational fluid dynamics. In Wendt, J. F. (ed.), Computational Fluid Dynamics. Springer, New York: 271–297.Google Scholar
  11. Duan, H., R. Ma, X. Xu, F. Kong, S. Zhang, W. Kong, J. Hao & L. Shang, 2009. Two-decade reconstructiong of algal blooms in China’s Lake Taihu. Environmental Science & Technology 43(10): 3522–3528.CrossRefGoogle Scholar
  12. Fujii, Y. & M. Kamachi, 2003. Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes. Journal of Geophysical Research: Oceans 108(C9): 1–13.CrossRefGoogle Scholar
  13. Gallaudet, T. & J. Simpson, 1994. An empirical orthogonal function analysis of remotely sensed sea surface temperature variability and its relation to interior oceanic processed off Baja California. Remote Sensing of Environment 47(3): 375–389.CrossRefGoogle Scholar
  14. Gao, S., H. Wang, G. Liu & H. Li, 2013. Spatio-temporal variability of chlorophyll a and its responses to sea surface temperature, winds and height anomaly in the western South China Sea. Acta Oceanologica Sinica 32(1): 48–58.CrossRefGoogle Scholar
  15. Gong, B., X. Gan, W. Liu, L. Zhang & T. Chen, 2013. The vegetation distribution characteristics in the Three-River Headwaters Region in China based on EOF analysis. Earth Science Frontiers 20(3): 234–239. (in Chinese).Google Scholar
  16. Guo, L., 2007. Doing battle with the green monster of Lake Taihu. Science 317: 1166.CrossRefGoogle Scholar
  17. Huisman, J., H. Matthijs & P. Visser, 2005. Harmful Cyanobacteria. Springer, Dordrecht.CrossRefGoogle Scholar
  18. Iida, T. & S. Saitoh, 2007. Temporal and spatial variability of chlorophyll concentrations in the Bering Sea using empirical orthogonal function (EOF) analysis of remote sensing data. Deep-Sea Research Part II 54: 2657–2671.CrossRefGoogle Scholar
  19. Ishikawa, K., M. Kumagai, W. F. Vincent, S. Tsujimura & H. Nakahura, 2002. Transport and accumulation of bloom-forming cyanobacteria in a large, mid-latitude lake: the gyre-Microcystis hypothesis. Limnology 3: 87–96.CrossRefGoogle Scholar
  20. Ji, Z. & K. Jin, 2006. Gyres and seiches in a large and shallow lakes. Journal of Great lakes Research 32: 764–775.CrossRefGoogle Scholar
  21. Kong, F. & G. Gao, 2005. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes. Acta Ecologica Sinica 25(3): 589–595. (in Chinese).Google Scholar
  22. Kong, F., R. Ma, J. Gao & X. Wu, 2009. The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. Journal of Lake Sciences 21(3): 314–328. (in Chinese).CrossRefGoogle Scholar
  23. Li, W., B. Qin & G. Zhu, 2014. Forecasting short-term cyanobacterial blooms in Lake Taihu, China, using a coupled hydrodynamic-algal biomass model. Ecohydrology 7: 794–802.CrossRefGoogle Scholar
  24. Li, W., B. Qin, Y. Zhang & G. Zhu, 2016. Numerical forecasting of short-term algae-induced black bloom in eutrophic shallow lake: a case study of Lake Taihu. Journal of Lake Sciences 28(4): 701–709. (in Chinese).CrossRefGoogle Scholar
  25. Liu, X., J. Wang, X. Cheng & T. Yan, 2012. The temporal and spatial evolution of chlorophyll-a concentration in the South China Sea. Journal of Tropical Oceanography 31(4): 42–48. (in Chinese).Google Scholar
  26. Ma, J., J. Brookes & B. Qin, 2014. Environmental factors controlling colocy formation in blooms of the cyanobacteria Microcystis spp. In Lake Taihu, China. Harmful Algae 31: 136–142.CrossRefGoogle Scholar
  27. Ma, R., F. Kong, H. Duan, S. Zhang, W. Kong & J. Hao, 2008. Spatio-temporal distribution of cyanobacteria blooms based on satellite imageries in Lake Taihu, China. Journal of Lake Sciences 20(6): 687–694. (in Chinese).CrossRefGoogle Scholar
  28. Madala, R. & S. Piacsek, 1977. A semi-implicit numerical model for baroclinic oceans. Journal of Computational Physics 23: 167–178.CrossRefGoogle Scholar
  29. Micheli, F., 1999. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285: 1396–1398.CrossRefGoogle Scholar
  30. Navarra, A. & V. Simoncini, 2010. A Guide to Empirical Orthogonal Functions for Climate Data Analysis. Springer, Dordrecht.CrossRefGoogle Scholar
  31. North, G., T. Bell, R. Cahalan & F. Moeng, 1982. Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review 110: 699–706.CrossRefGoogle Scholar
  32. Paerl, H., N. Hall & E. Calandrino, 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409(10): 1739–1745.CrossRefGoogle Scholar
  33. Preisendorfer, R. & C. Mobley, 1988. Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam.Google Scholar
  34. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  35. Roe, P., 1981. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 43: 357–372.CrossRefGoogle Scholar
  36. Simons, T., 1974. Verification of numerical models of Lake Ontario, Part I. Circulation in spring and early summer. Journal of Physical Oceanography 4: 507–523.CrossRefGoogle Scholar
  37. Soomere, T. & M. Viska, 2014. Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. Journal of Marine Systems 129: 96–105.CrossRefGoogle Scholar
  38. Storch, H. & A. Navarra, 1999. Analysis of Climate Variability: Applications of Statistical Techniques. Springer, Berlin.CrossRefGoogle Scholar
  39. Wang, J. & R. Liu, 2001. Finite volume methods for solving the problem of discontinuous solution. Chinese Journal of Computational Physics 18(2): 97–105. (in Chinese).Google Scholar
  40. Wang, C., L. Chen, W. Pan & X. Qian, 2010a. Divergence characteristics and formation mechanism of wind field appropriate for the cyanobacteria bloom in Taihu Lake. China Environmental Science 30(9): 1168–1176. (in Chinese).Google Scholar
  41. Wang, J., D. Tang & Y. Sui, 2010b. Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. Journal of Marine Systems 83: 141–149.CrossRefGoogle Scholar
  42. Wang, C., J. Huang & X. Qian, 2011a. Spatio-temporal characteristics of wind field under high temperature and gentle breeze in Taihu Basin. Journal of Lake Sciences 23(1): 122–128. (in Chinese).CrossRefGoogle Scholar
  43. Wang, W., M. Zeng & J. Ren, 2011b. Numerical study of the impact of surface wind changes on the cyanobacteria bloom in Lake Taihu. Journal of the Meteorological Sciences 31(6): 718–725. (in Chinese).Google Scholar
  44. Wei, F., 1999. Modern Climatological Statistical Diagnosis and Prediction. China Meteorological Press, Beijing.Google Scholar
  45. Wu, T., B. Qin, G. Zhu, L. Luo, Y. Ding & G. Bian, 2013. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China. Environmental Science and Pollution Research 20(12): 8546–8556.CrossRefGoogle Scholar
  46. Wynne, T., R. Stumpf, M. Tomlinson & J. Dyble, 2010. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnology and Oceanography 55(5): 2025–2036.CrossRefGoogle Scholar
  47. Xu, H., H. Paerl & B. Qin, 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography 55(1): 420–432.CrossRefGoogle Scholar
  48. Zhang, Y., R. Ma, H. Duan, et al., 2014. A novel algorithm to estimate algal bloom coverage to subpixel resolution in Lake Taihu. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(7): 3060–3068.CrossRefGoogle Scholar
  49. Zhang, Y., K. Shi, J. Liu, et al., 2016. Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. Science of the Total Environment 569–570: 1517–1529.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of ScienceNanjingChina

Personalised recommendations