Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States


Establishment of nonnative fishes and extirpations of native fishes have homogenized freshwater fish faunas, yet our understanding of the drivers of this process remain limited. We addressed this knowledge gap by testing three hypotheses about introductions and homogenization of fish communities is the eastern United States: First, whether nonnative fish introductions have caused fish faunas to become homogenized or differentiated; second, whether patterns of faunal change are related to native species richness, propagule pressure, and anthropogenic disturbance; third, whether invasion patterns are attributable to either biotic resistance or preadaptation. We compared taxonomic similarity among watersheds in historical and contemporary time steps, and modeled contributions of different drivers to faunal change within watersheds. Average similarity among watersheds nearly doubled in contemporary times, pointing to substantial fish faunal homogenization. No watersheds lost species; patterns of homogenization are attributable entirely to nonnative species invasion. Community change and nonnative richness were positively associated with agriculture-urban land use, recreational fishing demand, and elevation. Native richness negatively affected community change and nonnative richness. Nonnative species originated from watersheds with higher richness than the ones they invaded, suggesting a role for biotic resistance. Understanding how mechanisms operate across spatial scales will help guide future conservation efforts.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Alofs, K. M. & D. A. Jackson, 2014. Meta-analysis suggests biotic resistance in freshwater environments is driven by consumption rather than competition. Ecology 95(12): 3259–3270.

  2. Baiser, B., J. D. Olden, S. Record, J. L. Lockwood & M. L. McKinney, 2012. Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: Biological Sciences 279(1748): 4772–4777.

  3. Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26(7): 333–339.

  4. Budnick, W. R., T. Leboucher, J. Belliard, J. Soininen, I. Lavoie, K. Pound, A. Jamoneau, J. Tison-Rosebery, E. Tales & V. Pajunen, 2019. Local and regional drivers of taxonomic homogenization in stream communities along a land use gradient. Global Ecology and Biogeography 2019: 1597–1609.

  5. Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15(1): 22–40.

  6. Clavero, M. & E. Garcia-Berthou, 2006. Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecological Applications 16(6): 2313–2324.

  7. Clavero, M. & V. Hermoso, 2011. Reservoirs promote the taxonomic homogenization of fish communities within river basins. Biodiversity and Conservation 20(1): 41–57.

  8. Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8(5): 1023–1037.

  9. Davis, A. & J. Darling, 2017. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale. Diversity and Distributions 23(6): 692–702.

  10. Dawson, W., R. P. Rohr, M. van Kleunen & M. Fischer, 2012. Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytologist 194(3): 859–867.

  11. Dextrase, A. J. & N. E. Mandrak, 2006. Impacts of alien invasive species on freshwater fauna at risk in Canada. Biological Invasions 8(1): 13–24.

  12. Domisch, S., G. Amatulli & W. Jetz, 2015. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Scientific Data 2: 150073.

  13. dos Santos, D. A., D. J. Hoeinghaus & L. C. Gomes, 2018. Spatial scales and the invasion paradox: a test using fish assemblages in a Neotropical floodplain. Hydrobiologia 817(1): 121–131.

  14. Fitzgerald, D. B., M. Tobler & K. O. Winemiller, 2016. From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Global change biology 22(7): 2440–2450.

  15. Fridley, J. D. & D. F. Sax, 2014. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Global Ecology and Biogeography 23(11): 1157–1166.

  16. Fridley, J., J. Stachowicz, S. Naeem, D. Sax, E. Seabloom, M. Smith, T. Stohlgren, D. Tilman & B. V. Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88(1): 3–17.

  17. Gesch, D., M. Oimoen, S. Greenlee, C. Nelson, M. Steuck & D. Tyler, 2002. The national elevation dataset. Photogrammetric Engineering and Remote Sensing 68(1): 5–32.

  18. Giam, X. & J. D. Olden, 2016. Environment and predation govern fish community assembly in temperate streams. Global Ecology and Biogeography 25(10): 1194–1205.

  19. Gido, K. B. & J. H. Brown, 1999. Invasion of North American drainages by alien fish species. Freshwater Biology 42(2): 387–399.

  20. Gido, K. B., J. F. Schaefer & J. Pigg, 2004. Patterns of fish invasions in the Great Plains of North America. Biological Conservation 118(2): 121–131.

  21. González-Suárez, M., S. Bacher & J. M. Jeschke, 2015. Intraspecific trait variation is correlated with establishment success of alien mammals. The American Naturalist 185(6): 737–746.

  22. Guo, Q. & J. D. Olden, 2014. Spatial scaling of non-native fish richness across the United States. PLoS ONE 9(5): e97727.

  23. Herborg, L.-M., C. L. Jerde, D. M. Lodge, G. M. Ruiz & H. J. MacIsaac, 2007. Predicting invasion risk using measures of introduction effort and environmental niche models. Ecological Applications 17(3): 663–674.

  24. Hierro, J. L., J. L. Maron & R. M. Callaway, 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology 93(1): 5–15.

  25. Homer, C., J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J. Wickham & K. Megown, 2015. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Engineering & Remote Sensing 81(5): 345–354.

  26. Jeschke, J. M. & D. L. Strayer, 2006. Determinants of vertebrate invasion success in Europe and North America. Global Change Biology 12: 1608–1698.

  27. Johnson, P. T., J. D. Olden & M. J. Vander Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6(7): 357–363.

  28. Kennedy, T. A., S. Naeem, K. M. Howe, J. M. Knops, D. Tilman & P. Reich, 2002. Biodiversity as a barrier to ecological invasion. Nature 417(6889): 636–638.

  29. Kilian, J. V., R. J. Klauda, S. Widman, M. Kashiwagi, R. Bourquin, S. Weglein & J. Schuster, 2012. An assessment of a bait industry and angler behavior as a vector of invasive species. Biological Invasions 14(7): 1469–1481.

  30. Koleff, P., K. J. Gaston & J. J. Lennon, 2003. Measuring beta diversity for presence–absence data. Journal of Animal Ecology 72(3): 367–382.

  31. Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff & S. Brosse, 2008a. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS biology 6(2): e28.

  32. Leprieur, F., O. Beauchard, B. Hugueny, G. Grenouillet & S. Brosse, 2008b. Null model of biotic homogenization: a test with the European freshwater fish fauna. Diversity and Distributions 14(2): 291–300.

  33. Leprieur, F., J. D. Olden, S. Lek & S. Brosse, 2009. Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography 36(10): 1899–1912.

  34. Liu, C., D. He, Y. Chen & J. D. Olden, 2017. Species invasions threaten the antiquity of China’s freshwater fish fauna. Diversity and Distributions 23(5): 556–566.

  35. Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20: 223–228.

  36. Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15(5): 904–910.

  37. Magnusson, A., H. Skaug, A. Nielsen, C. Berg, K. Kristensen, M. Maechler, K. van Bentham, B. Bolker & M. Brooks, 2017. glmmTMB: generalized linear mixed models using template model builder. R package version 01 3.

  38. Marchetti, M. P., T. Light, J. Feliciano, T. Armstrong, Z. Hogan, J. Viers & P. B. Moyle, 2001. Homogenization of California’s Fish Fauna Through Abiotic Change Biotic homogenization. Springer, New York: 259–278.

  39. Marchetti, M. P., T. Light, P. B. Moyle & J. H. Viers, 2004a. Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecological Applications 14(5): 1507–1525.

  40. Marchetti, M. P., P. B. Moyle & R. Levine, 2004b. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecological Applications 14(2): 587–596.

  41. Marchetti, M. P., P. B. Moyle & R. Levine, 2004c. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshwater Biology 49(5): 646–661.

  42. Marr, S. M., M. P. Marchetti, J. D. Olden, E. Garcia-Berthou, D. L. Morgan, I. Arismendi, J. A. Day, C. L. Griffiths & P. H. Skelton, 2010. Freshwater fish introductions in mediterranean-climate regions: are there commonalities in the conservation problem? Diversity and Distributions 16: 606–619.

  43. Matsuzaki, S. I. S., T. Sasaki & M. Akasaka, 2013. Consequences of the introduction of exotic and translocated species and future extirpations on the functional diversity of freshwater fish assemblages. Global Ecology and Biogeography 22(9): 1071–1082.

  44. Maurel, N., J. Hanspach, I. Kühn, P. Pyšek & M. van Kleunen, 2016. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Global Ecology and Biogeography 25(12): 1500–1509.

  45. Mazzotta, M., L. Wainger, S. Sifleet, J. T. Petty & B. Rashleigh, 2015. Benefit transfer with limited data: an application to recreational fishing losses from surface mining. Ecological Economics 119: 384–398.

  46. McKinney, M. L., 2005. Species introduced from nearby sources have a more homogenizing effect than species from distant sources: evidence from plants and fishes in the USA. Diversity and Distributions 11(5): 367–374.

  47. McKinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14(11): 450–453.

  48. Muneepeerakul, R., E. Bertuzzo, H. J. Lynch, W. F. Fagan, A. Rinaldo & I. Rodriguez-Iturbe, 2008. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453: 223.

  49. NatureServe, 2010. Digital Distribution Maps of the Freshwater Fishes in the Conterminous United States, version 3.0. Arlington.

  50. Olden, J. D., 2006. Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33(12): 2027–2039.

  51. Olden, J. D. & N. L. Poff, 2003. Toward a mechanistic understanding and prediction of biotic homogenization. The American Naturalist 162(4): 442–460.

  52. Olden, J. D. & N. L. Poff, 2004. Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85(7): 1867–1875.

  53. Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19(1): 18–24.

  54. Olden, J. D., N. L. Poff & K. R. Bestgen, 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs 76(1): 25–40.

  55. Olden, J. D., M. J. Kennard & B. J. Pusey, 2008. Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography 17(1): 25–37.

  56. Olden, J. D., L. Comte & X. Giam, 2018. The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota 37: 23.

  57. Peoples, B. K. & E. A. Frimpong, 2011. Among-pass, interregional, and single- versus multiple-season comparisons of detection probabilities of stream fishes. Transactions of the American Fisheries Society 140: 67–83.

  58. Peoples, B. K. & R. Goforth, 2017a. Commonality in traits and hierarchical structure of vertebrate establishment success. Diversity and Distributions 23(8): 854–862.

  59. Peoples, B. K. & R. R. Goforth, 2017b. The indirect role of species-level factors in biological invasions. Global Ecology and Biogeography 26(5): 524–532.

  60. Peoples, B. K. & S. R. Midway, 2018. Fishing pressure and species traits affect stream fish invasions both directly and indirectly. Diversity and Distributions 24(8): 1158–1168.

  61. Peoples, B. K., S. R. Midway, J. T. DeWeber & T. Wagner, 2018. Catchment-scale determinants of nonindigenous minnow richness in the eastern United States. Ecology of Freshwater Fish 27(1): 138–145.

  62. Petsch, D. K., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology 101(3–4): 113–122.

  63. Pimm, S. L., G. J. Russell, J. L. Gittleman & T. M. Brooks, 1995. The future of biodiversity. Science 269(5222): 347–350.

  64. Pool, T. K. & J. D. Olden, 2012. Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions 18(4): 366–376.

  65. Pregler, K. C., J. C. Vokoun, T. Jensen & N. Hagstrom, 2015. Using multimethod occupancy estimation models to quantify gear differences in detection probabilities: is backpack electrofishing missing occurrences for a species of concern? Transactions of the American Fisheries Society 144(1): 89–95.

  66. Pyšek, P., A. M. Manceur, C. Alba, K. F. McGregor, J. Pergl, K. Štajerová, M. Chytrý, J. Danihelka, J. Kartesz & J. Klimešová, 2015. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96(3): 762–774.

  67. Rahel, F. J., 2000. Homogenization of fish faunas across the United States. Science 288(5467): 854–856.

  68. Ribeiro, F., B. Elvira, M. J. Collares-Pereira & P. B. Moyle, 2008. Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions 10(1): 89–102.

  69. Ricciardi, A. & S. K. Atkinson, 2004. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecology Letters 7(9): 781–784.

  70. Rosenzweig, M. L., 2001. The four questions: what does the introduction of exotic species do to diversity? Evolutionary Ecology Research 3(3): 361–367.

  71. Sax, D. F. & J. H. Brown, 2000. The paradox of invasion. Global Ecology and Biogeography 9(5): 363–371.

  72. Scott, M. C. & G. S. Helfman, 2001. Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries 26(11): 6–15.

  73. Seaber, P. R., F. P. Kapinos & G. L. Knapp, 1987. Hydrologic Unit Maps. US Government Printing Office, Washington, DC.

  74. Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution and Systematics 40: 81–102.

  75. Smith, K. G., 2006. Patterns of nonindigenous herpetofaunal richness and biotic homogenization among Florida counties. Biological Conservation 127(3): 327–335.

  76. Sommerwerk, N., C. Wolter, J. Freyhof & K. Tockner, 2017. Components and drivers of change in European freshwater fish faunas. Journal of Biogeography 44: 1781–1790.

  77. Stewart, D. R., A. W. Walters & F. J. Rahel, 2016. Landscape-scale determinants of native and non-native Great Plains fish distributions. Diversity and Distributions 22(2): 225–238.

  78. Strecker, A. L. & J. D. Olden, 2014. Fish species introductions provide novel insights into the patterns and drivers of phylogenetic structure in freshwaters. Proceedings of the Royal Society of London B: Biological Sciences 281(1778): 20133003.

  79. Taylor, E. B., 2004. An analysis of homogenization and differentiation of Canadian freshwater fish faunas with an emphasis on British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 61(1): 68–79.

  80. Team, R. D. C., 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

  81. Thuiller, W., L. Gallien, I. Boulangeat, F. De Bello, T. Münkemüller, C. Roquet & S. Lavergne, 2010. Resolving Darwin’s naturalization conundrum: a quest for evidence. Diversity and Distributions 16(3): 461–475.

  82. United States Army Corps of Engineers. 2018. National Inventory of Dams.

  83. Vila-Gispert, A., C. Alcaraz & E. García-Berthou, 2005. Life-History Traits of Invasive Fish in Small Mediterranean Streams Issues in Bioinvasion Science. Springer, New York: 107–116.

  84. Villéger, S., S. Blanchet, O. Beauchard, T. Oberdorff & S. Brosse, 2011. Homogenization patterns of the world’s freshwater fish faunas. Proceedings of the National Academy of Sciences USA 108(44): 18003–18008.

  85. Villéger, S., G. Grenouillet & S. Brosse, 2014. Functional homogenization exceeds taxonomic homogenization among E uropean fish assemblages. Global Ecology and Biogeography 23(12): 1450–1460.

  86. Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277(5325): 494–499.

  87. Vitule, J. R. S., F. Skóra & V. Abilhoa, 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions 18(2): 111–120.

  88. Wagner, M. D., D. A. Schumann & B. J. Smith, 2019. Gear effectiveness and size selectivity for five cryptic madtom species (Noturus spp.). Journal of Applied Ichthyology 35(3): 673–682.

Download references


We thank the numerous agency and university employees who facilitated access to species occurrences. Comments by two anonymous reviewers greatly improved the manuscript. This article represents Technical Contribution Number 6814 of the Clemson University Experiment Station.

Author information

Correspondence to Brandon K. Peoples.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: André A. Padial, Julian D. Olden & Jean R. S. Vitule / The Aquatic Homogenocene.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peoples, B.K., Davis, A.J.S., Midway, S.R. et al. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia (2020) doi:10.1007/s10750-019-04162-4

Download citation


  • Stream
  • Species introductions
  • Biotic resistance
  • Propagule pressure
  • Freshwater
  • Nonnative species
  • Watersheds