Skip to main content

Effects of thermal and hypoxic stress on respiratory patterns of three unionid species: implications for management and conservation

Abstract

Mussels are at particular risk from thermal stress and hypoxia due to limited range and mobility. Of interest to managers is whether sensitivity is uniform or varies among species and subpopulations. We used respirometry to investigate effects of temperature on energy demand and hypoxia tolerance of two narrowly distributed species (Cyclonaias petrina, Colorado River; C. necki, Guadalupe River), and two subpopulations of a widely distributed species (C. pustulosa: Colorado and Navasota rivers) in central Texas. We observed zero mortality during acclimation and respirometry runs even when mussels were exposed to hypoxic conditions for several hours at 36 °C. However, type and magnitude of sublethal effects varied across species and subpopulations as temperatures increased. C. pustulosa (Colorado River) exhibited the greatest increase in energy demand, C. petrina exhibited a decreasing ability to regulate oxygen consumption and an increase in critical dissolved oxygen concentration, C. pustulosa (Navasota River) exhibited metabolic depression, and both C. petrina and C. necki exhibited increasing frequency of valve closure. Results suggest that effects of increasing temperature on energetic requirements are more important than effects on hypoxia tolerance. Management strategies considering physiological differences among species and/or subpopulations are likely to be more effective than a simple “one-size-fits-all” approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Anestis, A., A. Lazou, H. O. Pörtner & B. Michaelidis, 2007. Behavioural, metabolic and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293: R911–R921.

    Article  CAS  Google Scholar 

  • ASTM, 2013. Standard Guide for Conducting Laboratory Toxicity Tests with Freshwater Mussels. ASTM International, West Conshohocken, PA.

    Google Scholar 

  • Bayne, B. L., 1976. Marine Mussels: Their Ecology and Physiology, Vol. 10. Cambridge University Press, New York.

    Google Scholar 

  • Brown, L. R., 1989. Temperature preferences and oxygen consumption of three species of sculpin (Cottus) from the Pit River drainage, California. Environmental Biology of Fishes 26: 223–236.

    Article  Google Scholar 

  • Burlakova, L., A. Karatayev, E. Froufe, A. Bogan & M. Lopes-Lima, 2018. A new freshwater bivalve species of the genus Cyclonaias from Texas (Unionidae: Ambleminae: Quadrulini). The Nautilus 132: 45–50.

    Google Scholar 

  • Burton, T., S. S. Killen, J. D. Armstrong & N. B. Metcalfe, 2011. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B: Biological Sciences 278: 3465–3473.

    Article  CAS  Google Scholar 

  • Chen, L. Y., A. G. Heath & R. J. Neves, 2001. Comparison of oxygen consumption in freshwater mussels (Unionidae) from different habitats during declining dissolved oxygen concentration. Hydrobiologia 450: 209–214.

    Article  Google Scholar 

  • Crocker, C. E. & J. J. Cech Jr., 1997. Effects of hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. Environmental Biology of Fishes 50: 383–389.

    Article  Google Scholar 

  • Ferreira-Rodriguez, N. & I. Pardo, 2017. The interactive effects of temperature, trophic status, and the presence of an exotic clam on the performance of a native freshwater mussel. Hydrobiologia 797: 171–182.

    Article  CAS  Google Scholar 

  • Ferreira-Rodríguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, C. M. Barnhart, Y. V. Bespalaya, A. E. Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrigran, V. T. Do, K. Douda, E. Froufe, C. Gumpinger, L. Henrikson, C. L. Humphrey, N. A. Johnson, O. Klishko, M. W. Klunzinger, S. Kovitvadhi, U. Kovitvadhi, J. Lajtner, M. Lopes-Lima, E. A. Moorkens, S. Nagayama, K. O. Nagel, M. Nakano, J. N. Negishi, P. Ondina, P. Oulasvirta, V. Prié, N. Riccardi, M. Rudzīte, F. Sheldon, R. Sousa, D. L. Strayer, M. Takeuchi, J. Taskinen, A. Teixeira, J. S. Tiemann, M. Urbańska, S. Varandas, M. V. Vinarski, B. J. Wicklow, T. Zając & C. C. Vaughn, 2019. Research priorities for freshwater mussel conservation assessment. Biological Conservation 231: 77–87.

    Article  Google Scholar 

  • Freshwater Mollusk Conservation Society, 2016. A national strategy for the conservation of native freshwater mollusks. Freshwater Mollusk Biology and Conservation 19: 1–21.

    Google Scholar 

  • Gagnon, P. M., S. W. Golladay, W. K. Michener & M. C. Freeman, 2004. Drought responses of freshwater mussels (Unionidae) in coastal plain tributaries of the Flint River basin, Georgia. Journal of Freshwater Ecology 19: 667–679.

    Article  Google Scholar 

  • Ganser, A. M., T. J. Newton & R. J. Haro, 2015. Effects of elevated water temperature on physiological responses in adult freshwater mussels. Freshwater Biology 60: 1705–1716.

    Article  Google Scholar 

  • Gates, K. K., C. C. Vaughn & J. P. Julian, 2015. Developing environmental flow recommendations for freshwater mussels using the biological traits of species guilds. Freshwater Biology 60: 620–635.

    Article  Google Scholar 

  • Gnaiger, E., 1983a. Heat dissipation and energetic efficiency in animal anoxibiosis: economy contra power. Journal of Experimental Zoology 228: 471–490.

    Article  CAS  Google Scholar 

  • Gnaiger, E., 1983b. Appendix C Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In Gnaiger, E. & H. Forstner (eds), Polarographic Oxygen Sensors: Aquatic and Physiological Applications. Springer-Verlag, New York: 337–345.

    Chapter  Google Scholar 

  • Gough, H. M., A. M. G. Landis & J. A. Stoeckel, 2012. Behaviour and physiology are linked in the responses of freshwater mussels to drought. Freshwater Biology 57: 2356–2366.

    Article  Google Scholar 

  • Johnson, N. A., C. H. Smith, J. M. Pfeiffer, C. R. Randklev, J. D. Williams & J. D. Austin, 2018. Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the US Endangered Species Act. Scientific Reports 8: 15892.

    Article  Google Scholar 

  • Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekell, D. H. Secor & R. L. Wingate, 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8: 461–466.

    Article  Google Scholar 

  • Marshall, D. J., Y. Dong, C. D. McQuaid & G. A. Williams, 2011. Thermal adaptation in the intertidal snail Echinolittorina malaccana contradicts current theory by revealing the crucial roles of resting metabolism. The Journal of Experimental Biology 214: 3649–3657.

    Article  CAS  Google Scholar 

  • Master, L. L., B. A. Stein, L. S. Kutner & G. A. Hammerson, 2000. Vanishing assets: conservation status of U.S. species. In Stein, B. A., L. S. Kutner & J. S. Adams (eds), Precious Heritage: The Status of Biodiversity in the United States. Oxford University Press, New York: 93–118.

    Google Scholar 

  • Moore, R. D., D. L. Spittlehouse & A. Story, 2005. Riparian microclimate and stream temperature response to forest harvesting: a review. Journal of the American Water Resources Association 41: 813–834.

    Article  Google Scholar 

  • Mueller, C. A. & R. S. Seymour, 2011. The regulation index: a new method for assessing the relationship between oxygen consumption and environmental oxygen. Physiological and Biochemical Zoology 84: 522–532.

    Article  Google Scholar 

  • Newton, T., J. Sauer & B. Karns, 2013. Water and sediment temperatures at mussel beds in the upper Mississippi River basin. Walkerana 16: 53–62.

    Google Scholar 

  • Pandolfo, T. J., W. G. Cope, C. Arellano, R. B. Bringolf, M. C. Barnhart & E. Hammer, 2010. Upper thermal tolerances of early life stages of freshwater mussels. Journal of the North American Benthological Society 29: 959–969.

    Article  Google Scholar 

  • Payton, S. L., P. D. Johnson & M. J. Jenny, 2016. Comparative physiological, biochemical and molecular thermal stress response profiles for two unionid freshwater mussel species. Journal of Experimental Biology 219: 3562–3574.

    Article  Google Scholar 

  • Randklev, C. R., E. T. Tsakris, M. S. Johnson, T. Popejoy, M. A. Hart, J. Khan, D. Geeslin & C. R. Robertson, 2018. The effect of dewatering on freshwater mussel (Unionidae) community structure and the implications for conservation and water policy: a case study from a spring-fed stream in the southwestern United States. Global Ecology and Conservation 16: 1–15.

    Article  Google Scholar 

  • Rogers, N. J., M. A. Urbina, E. E. Reardon, D. J. McKenzie & R. W. Wilson, 2016. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conservation Physiology 4: cow012.

    Article  Google Scholar 

  • Smith, M. E., J. M. Lazorchak, L. E. Herrin, S. Brewer-Swartz & W. T. Thoeny, 1997. A reformulated, reconstituted water for testing the freshwater amphipod, Hyalella azteca. Environmental Toxicology and Chemistry 16: 1229–1233.

    Article  CAS  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2008. A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia 158: 307–317.

    Article  Google Scholar 

  • Verberk, W. C., D. T. Bilton, P. Calosi & J. I. Spicer, 2011. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92: 1565–1572.

    Article  Google Scholar 

  • Walsh, S. J., D. C. Haney & C. M. Timmerman, 1997. Variation in thermal tolerance and routine metabolism among spring-and stream dwelling freshwater sculpins (Teleostei: Cottidae) of the southeastern United States. Ecology of Freshwater Fish 6: 84–94.

    Article  Google Scholar 

  • Wood, C. M., 2018. The fallacy of the Pcrit—are there more useful alternatives? Journal of Experimental Biology 221: jeb163717.

    Article  Google Scholar 

  • Xenopoulos, M. A., D. M. Lodge, J. Alcamo, M. Märker, K. Schulze & D. P. Van Vuuren, 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557–1564.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Alabama Agricultural Experiment Station and the Hatch program of the National Institute of Food and Agriculture, U.S. Department of Agriculture. Funding was provided by the Texas Comptroller of Public Accounts and Texas State University Subcontract 17,012-82683-1. We thank B. Littrell, K. Sullivan, J. Guajardo, and J. Jenkerson of BIOWEST, Inc. for mussel field collections. Lab members Ryan Fluharty, Kaelyn Fogelman, and Rebecca Gibson provided much appreciated help throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Stoeckel.

Additional information

Handling editor: Manuel Lopes Lima

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haney, A., Abdelrahman, H. & Stoeckel, J.A. Effects of thermal and hypoxic stress on respiratory patterns of three unionid species: implications for management and conservation. Hydrobiologia 847, 787–802 (2020). https://doi.org/10.1007/s10750-019-04138-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04138-4

Keywords