Advertisement

Impact of human activities and climate on Lake Morenito, Northern Patagonia, Argentina

  • Melina MauadEmail author
  • Christoph Mayr
  • Teresa Graßl
  • Nathalie Dubois
  • Maria Noel Serra
  • Julieta Massaferro
Primary Research Paper

Abstract

Lake Morenito located in the Argentinean Patagonia has been exposed to climatic, volcanic, and anthropogenic impacts for the last decades. In particular, the damming of the lake and the eruption of the Calbuco/Puyehue Volcanoes in AD 1960 played an important role in the lake’s history. A 80-cm-long sediment core from Lake Morenito spanning more than 100 years was studied for chironomids, stable isotopes, and organic geochemistry to investigate how natural and anthropogenic stressors impacted the lake. Chironomid assemblages display large changes around AD 1950, with the appearance of the warm-adapted Chironomus and the replacement of Apsectrotanypus by Ablabesmyia, indicating a shift to warmer conditions. By that time and up to the present, an increasing trend of δ15N coupled with a decrease of δ13C points to shifts in the carbon and nitrogen cycles associated with human activities. It is evident that the onset of human activities during the 1950s following by the lake damming in AD 1960 had significant effects on the chironomid assemblages and the geochemical composition of sediments which is reflected in the progressive deterioration of the lake ecosystem.

Keywords

Paleolimnology Chironomid assemblages Organic geochemistry Human impact Patagonia 

Notes

Acknowledgements

We thank Natalia Garcia Chapori and Olga Laura Liniers for helping with the fieldwork and lab sampling. This study is a contribution to the project PICT 2931 (MINCYT/Argentina) and PIP 11220110100185 (CONICET/Argentina). Fieldwork and travel grants were funded by a Cooperation Project between BMBF Germany (01DN16025) and MINCYT Argentina (AL15/03). We are grateful to Nahuel Huapi National Park for the logistic support.

References

  1. Árva, D., M. Tóth, H. Horváth, S. A. Nagy & A. Specziár, 2015. The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake. Hydrobiologia 742:249–266Google Scholar
  2. Abaleron, C., 1995. Urban space and unsatisfied basic needs: the case of San Carlos de Bariloche, Argentina. Environment and Urbanization 7(1): 97–115.CrossRefGoogle Scholar
  3. Angeler, D. G. & I. Kühn, 2013. Revealing a conservation challenge through partitioned long-term beta diversity: increasing turnover and decreasing nestedness of boreal lake metacommunities. Diversity and Distribution 19: 772–781.CrossRefGoogle Scholar
  4. Appleby, P. G., 2008. Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18(1): 83–93.CrossRefGoogle Scholar
  5. Armesto, J. J., D. Manuschevich, A. Mora, C. Smith-Ramirez, R. Rozzi, A. M. Abarzúa & P. A. Marquet, 2009. From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 24: 148–160.Google Scholar
  6. Arnaud, F., O. Magand, E. Chapron, S. Bertrand, X. Boës, F. Charlet & M. A. Mélières, 2006. Radionuclide dating (210Pb, 137Cs, 241Am) of recent lake sediments in a highly active geodynamic setting (Lakes Puyehue and Icalma – Chilean Lake District). Science of the Total Environment 366: 837–850.CrossRefGoogle Scholar
  7. Balseiro, E., T. Kitzberger, B. Modenutti, M. Bastidas Navarro, V. Ojeda, C. Ubeda, S. Ippi, P. Macchi & M. Alonso, 2013. RNU Morenito-Laguna Esquerra. Primer informe. Universidad Nacional del Comahue, Centro Regional Universitario Bariloche. 49 pp.Google Scholar
  8. Blaauw, M. & J. A. Christen, 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3): 457–474.Google Scholar
  9. Braig, E., C. Mayr, G. Kirchner, A. Hofmann, U. Raeder & A. Melzer, 2013. Fifty years of eutrophication and lake restoration reflected in sedimentary carbon and nitrogen isotopes of a small, hardwater lake (South Germany). Journal of Limnology 72(2): 262–279.CrossRefGoogle Scholar
  10. Brooks, S. J., L. M. Hernández, J. Massaferro, G. R. Spinelli & M. Penn, 2009. Capacity building for freshwater insect studies in Northern Patagonia, Argentina: DARWIN Initiative Programme. Revista de la Sociedad Entomológica Argentina 68(1–2): 145–154.Google Scholar
  11. Cranston, P. 2017 [available on internet at http://chirokey.skullisland.info/].
  12. Daga, R., S. Ribeiro Guevara, M. L. Sanchez & M. Arribere, 2008. Source identification of volcanic ashes by geochemical analysis of well-preserved lacustrine tephras in Nahuel Huapi National Park. Applied Radiation and Isotopes 66(10): 1325–1336.CrossRefGoogle Scholar
  13. Daga, R., S. Ribeiro Guevara, M. L. Sanchez & M. Arribere, 2010. Tephrochronology of recent events in the Andean range (Northern Patagonia): spatial distribution and provenance of lacustrine ash layers in the Nahuel Huapi National Park. Journal of Quaternary Science 25: 1113–1123.CrossRefGoogle Scholar
  14. Eggermont, H. & O. Heiri, 2012. The chironomid–temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87(2): 430–456.CrossRefGoogle Scholar
  15. Finlay, J. C. & C. Kendall, 2007. Stable isotopes tracing of temporal and spatial variability in organic matter sources to freshwater ecosystem. In Michener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science 2: 283-333.  https://doi.org/10.1002/9780470691854.Google Scholar
  16. Heyng, A. M., C. Mayr, A. Lücke, B. Striewski, S. Wastegård & H. Wissel, 2012. Environmental changes in northern New Zealand since the Middle Holocene inferred from stable isotope records (δ15N, δ13C) of Lake Pupuke. Journal of Paleolimnology 48: 351–366.CrossRefGoogle Scholar
  17. Hollander, D. J. & M. A. Smith, 2001. Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochimica et Cosmochimica Acta 65(23): 4321–4337.CrossRefGoogle Scholar
  18. Lavergne, A., V. Daux, M. Pierre, M. Stievenard, A. M. Srur & R. Villalba, 2018. Past summer temperatures inferred from dendrochronological records of Fitzroya cupressoides on the eastern slope of the Northern Patagonian Andes. Journal of Geophysical Research: Biogeosciences 123(1): 32–45.Google Scholar
  19. Lücke, A. & A. Brauer, 2004. Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 211(1–2): 139–155.CrossRefGoogle Scholar
  20. Massaferro, J. & S. J. Brooks, 2002. Response of chironomids to Late Quaternary environmental change in the Taitao Peninsula, southern Chile. Journal of Quaternary Science 17: 101–111.CrossRefGoogle Scholar
  21. Massaferro, J., S. Ribeiro Guevara, A. Rizzo & M. Arribére, 2005. Short-term environmental changes in Lake Morenito (41° S, 71° W, Patagonia, Argentina) from the analysis of sub-fossil chironomids. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 23–30.CrossRefGoogle Scholar
  22. Massaferro, J., C. Ortega, R. Fuentes & A. Araneda, 2013. Guia Para la Identificación de Tanytarsini Subfosiles (Diptera: Chironomidae: Chironominae) de la Patagonia. Ameghiniana 50(3): 319–334.CrossRefGoogle Scholar
  23. Massaferro, J., I. Larocque-Tobler, S. J. Brooks, M. Vandergoes, A. Dieffenbacher-Krall & P. Moreno, 2014. Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based temperature model. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 214–224.CrossRefGoogle Scholar
  24. Massaferro, J., A. Correa-Metrio, F. Montes de Oca & M. Mauad, 2017. Contrasting responses of lake ecosystems to environmental disturbance: a paleoecological perspective from Northern Patagonia (Argentina). Hydrobiologia 816(1): 79–89.CrossRefGoogle Scholar
  25. Mayr, C., M. Fey, T. Haberzettl, S. Janssen, A. Lucke, N. I. Maidana, C. Ohlendorf, F. Schabitz, G. H. Schleser, U. Struck, M. Wille & B. Zolitschka, 2005. Palaeoenvironmental changes in Southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 228: 203–227.CrossRefGoogle Scholar
  26. Mayr, C., A. Lucke, N. I. Maidana, M. Wille, T. Haberzettl, H. Corbella, C. Ohlendorf, F. Schabitz, M. Fey, S. Janssen & B. Zolitschka, 2009. Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (Southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. Journal of Paleolimnology 42: 81–102.CrossRefGoogle Scholar
  27. Medina, V. D., 2017. Crecimiento urbano y desigualdad espacial en San Carlos de Bariloche. Bitácora Urbano Territorial 27(2): 101–108.CrossRefGoogle Scholar
  28. Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114(3–4): 289–302.CrossRefGoogle Scholar
  29. Mills, K., D. Schillereff, É. Saulnier-Talbot, P. Gell, N. J. Anderson, F. Arnaud, X. Dong, M. Jones, S. McGowan, J. Massaferro, H. Moorhouse, L. Perez & D. B. Ryves, 2017. Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle. WIREs Water 2017: e1404.Google Scholar
  30. Modenutti, B. E. & G. L. Pérez, 2001. Planktonic ciliates from an oligotrophic South Andean Lake, Morenito Lake (Patagonia, Argentina). Brazilian Journal of Biology 61(3): 389–395.CrossRefGoogle Scholar
  31. Modenutti, B., R. Albariño, M. Bastidas Navarro, V. Diaz Villanueva, M. S. Souza, C. Trochine, C. Las poumaderes, F. Cuassolo, G. Mariluán, L. Buria & E. Balseiro, 2010. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: organic matter, light and nutrient relationships. Ecología Austral 20: 89–221.Google Scholar
  32. Montes de Oca, F., L. Motta, M. S. Plastani, C. Laprida, A. Lami & J. Massaferro, 2018. Reconstructing recent environmental changes using non-biting midges (Diptera: Chironomidae) in two high mountain lakes from Northern Patagonia, Argentina. Journal of Paleolimnology 59(2): 175–187.CrossRefGoogle Scholar
  33. Municipalidad de San Carlos de Bariloche/Ordenanza 2691-CM-15, 2015. Plan de Manejo de Gestión Asociada. Reserva Natural Morenito-Ezquerra. 108 pp.Google Scholar
  34. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. Stevens, E. Szoecs & H. Wagner, 2013. Vegan: Community Ecology Package R Package Version (2-9). The Comprehensive R Archive Network.Google Scholar
  35. Rodriguez, N. J., 2015. Efectos del crecimiento urbano en una ciudad turística de montaña San Carlos de Bariloche, Patagonia Argentina. Investigaciones Turísticas 10: 202–230.CrossRefGoogle Scholar
  36. Rogora, M., J. Massaferro, A. Marchetto, G. Tartari & R. Mosello, 2008. The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. Journal of Limnology 67(2): 75–86.CrossRefGoogle Scholar
  37. Serra, M. N., M. L. García, N. I. Maidana, G. Villarosa, A. Lami & J. Massaferro, 2016. Little Ice Age to present paleoenvironmental reconstruction based on multiproxy analyses from Nahuel Huapi Lake (Patagonia, Argentina). Ameghiniana 53(1): 58–73.CrossRefGoogle Scholar
  38. Singer, B. S., K. A. Hoffman, A. Chauvin, R. S. Coe & M. S. Pringle, 1999. Dating transitionally magnetized lavas of the late Matuyama Chron: toward a new 40Ar/39Ar timescale of reversals and events. Journal of Geophysical Research 104: 679–693.CrossRefGoogle Scholar
  39. Smith, M. J., M. G. Pellatt, I. R. Walker, et al., 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. Journal of Paleolimnology 20(3): 277–293.CrossRefGoogle Scholar
  40. Soto Cárdenas, C., M. C. Diéguez, S. Ribeiro Guevara, M. Marvin-DiPasquale & C. P. Queimaliños, 2014. Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages. Science of Total Environment 494–495: 65–73.CrossRefGoogle Scholar
  41. Veblen, T. T., A. Holz, J. Paritsis, E. Raffaele, T. Kitzberger & M. Blackhall, 2011. Adapting to global environmental change in Patagonia: what role for disturbance ecology? Austral Ecology 36(8): 891–903.CrossRefGoogle Scholar
  42. Williams, N., M. Rieradevall, D. Añón Suárez, A. Rizzo, R. Daga, S. Ribeiro Guevara & M. A. Arribére, 2016. Chironomids as indicators of natural and human impacts in 700-yr record from the Northern Patagonian Andes. Quaternary Research 86: 1–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Melina Mauad
    • 1
    Email author
  • Christoph Mayr
    • 2
    • 3
  • Teresa Graßl
    • 3
  • Nathalie Dubois
    • 4
  • Maria Noel Serra
    • 5
  • Julieta Massaferro
    • 6
  1. 1.Instituto de Limnología “Dr. Raúl A. Ringuelet”Buenos AiresArgentina
  2. 2.Institut für GeographieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Department of Earth & Environmental SciencesLudwig-Maximilians-Universität MünchenMunichGermany
  4. 4.Surface Waters Research – Management, EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  5. 5.INIBIOMA, CONICETS.C. de BarilocheArgentina
  6. 6.CENAC APN, CONICETS.C. de BarilocheArgentina

Personalised recommendations