Skip to main content

Exploring community assembly among Javanese and Balinese freshwater shrimps (Atyidae, Palaemonidae) through DNA barcodes

Abstract

Species proliferate through evolutionary mechanisms but coexist through ecological dynamics. As such, it might be expected that mechanisms of speciation and species maintenance jointly influence the settlement of ecological communities, a process called community assembly. Disentangling the relative contribution of evolutionary and ecological dynamics might be a difficult task, particularly so for the tropical biotas due to their extreme diversity and large knowledge gaps. Here, we explore genetic diversity and distribution of 23 freshwater shrimp species of the genera Caridina and Macrobrachium in Sundaland to examine patterns of species co-occurrence based on 1583 observations across 19 sites in Java and Bali islands. DNA-based species delimitation methods applied to 204 cytochrome oxidase I sequences detected 30 operational taxonomic units and a few cases of deep intraspecific divergence. Species co-occurrence and phylogenetic community structure show no departure from expectations under a random distribution of species in landscapes and support a lottery model of community assembly. Species age estimates expand beyond the geological settlement of Sundaland, suggesting that species proliferation and community assembly are driven by mechanisms acting at distinct spatial and temporal scales.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alonso, D., R. S. Etienne & A. J. McKane, 2006. The merits of neutral theory. Trends in Ecology & Evolution 21: 451–457.

    Google Scholar 

  • Arhens, D., T. Fujisawa, H. J. Krammer, J. Eberle, S. Fabrizi & A. P. Vogler, 2016. Rarity and incomplete sampling in DNA-based species delimitation. Systematic Biology 65: 478–494.

    Google Scholar 

  • Avise, J. C., 1989. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.

    Google Scholar 

  • Baker, A. M., D. A. Hurwood, M. Krogh & J. M. Hughes, 2004. Mitochondrial DNA signatures of restricted gene flow within divergent lineages of an atyid shrimp (Paratya australiensis). Heredity (Edinburgh) 93: 196–207.

    CAS  Google Scholar 

  • Bermingham, E., S. McCafferty & A. P. Martin, 1997. Fish biogeography and molecular clocks: perspectives from the Panamanian isthmus. In Kocher, T. D. & C. A. Stepien (eds), Molecular Systematics of Fishes. CA Academic Press, San Diego: 113–128.

    Google Scholar 

  • Blair, C. & J. R. W. Bryson, 2017. Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Molecular Ecology Resources 17: 1168–1182.

    CAS  PubMed  Google Scholar 

  • Bouckaert, R. R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, A. Rambaut & A. J. Drummond, 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Computational Biology 10: e1003537.

    PubMed  PubMed Central  Google Scholar 

  • Brown, L. E. & A. M. Milner, 2012. Rapid loss of glacial ice reveals stream community assembly processes. Global Change Biology 18: 2195–2204.

    PubMed Central  Google Scholar 

  • Cai, Y., 2003. Systematic of Freshwater Shrimps of the Family Atyidae De Haan, 1849 (Crustacea: Decapoda: Caridea: Palaemonidae) of East and Southeast Asia. National University of Singapore, Singapore.

    Google Scholar 

  • Calcagno, V., N. Mouquet, P. Jarne & P. David, 2006. Coexistence in a metacommunity: the competition-colonization trade-off is not dead. Ecology Letters 9: 897–907.

    CAS  PubMed  Google Scholar 

  • Castelin, M., G. Marquet, G. Zimmerman, V. de Mazancourt & P. Keith, 2017. Genetic and morphological evidence for cryptic diversity in Macrobrachium australe and resurrection of M. ustulatus (Crustacea, Palaemonidae). European Journal of Taxonomy 289: 1–27.

    Google Scholar 

  • Cavender-Bares, J., A. Keen & B. Miles, 2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87: S109–S122.

    PubMed  Google Scholar 

  • Cavender-Bares, J., K. H. Kozak, P. V. A. Fine & S. W. Kembel, 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693–715.

    PubMed  Google Scholar 

  • Chisholm, R. & J. Lichstein, 2009. Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecology Letters 12: 1385–1393.

    PubMed  Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Bruyn, M., E. Nugroho, M. M. Hossain, J. B. Wilson & P. Mather, 2005. Phylogeographic evidence for the existence of an ancient biogeographic barrier: the isthmus of Kra seaway. Heredity (Edinburgh) 94: 370–378.

    Google Scholar 

  • De Bruyn, M., L. Rüber, S. Nylinder, B. Stelbrink, N. R. Lovejoy, S. Lavoué, T. Heok Hui, E. Nugroho, D. Wowor, P. K. L. Ng, M. N. Siti Azizah, T. Von Rintelen, R. Hall & G. R. Carvalho, 2013. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots. Systematic Biology 62: 398–410.

    PubMed  Google Scholar 

  • De Grave, S. & C. H. J. M. Frasen, 2011. Carideorum catalogus: the recent species of the Dendrobranchiate, Stenopodidean, Procarididean and Caridean shrimps (Crustacea: Decapoda). Zoologische Mededeelingen 85: 195–589.

    Google Scholar 

  • De Grave, S., Y. Cai & A. Anker, 2008. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595: 287–293.

    Google Scholar 

  • de Mazancourt, V., W. Klotz, G. Marquet, B. Mos, D. C. Rogers & P. Keith, 2019. The complex study of complexes: the first well-supported phylogeny of two species complexes within genus Caridina (Decapoda: Caridea: Atyidae) sheds light on evolution, biogeography, and habitat. Molecular Phylogenetics and Evolution 131: 164–180.

    PubMed  Google Scholar 

  • de Mazancourt, V., G. Marquet & P. Keith, 2017. The “Pinocchio shrimp effect”: first evidence of rostrum length variation in the environment in Caridina (Crustacea: Decapoda: Atyidae). Journal of Crustacean Biology 37: 243–248.

    Google Scholar 

  • Emerson, B. C. & R. G. Gillespie, 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution 23: 519–530.

    Google Scholar 

  • Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724.

    PubMed  PubMed Central  Google Scholar 

  • Gillespie, R., 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science 303: 356–359.

    CAS  PubMed  Google Scholar 

  • Gotelli, N., 1991. Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. American Naturalist 138: 768–776.

    Google Scholar 

  • Griffith, D. M., J. A. Veech & C. J. Marsh, 2016. Cooccur: probabilistic species co-occurrence analysis in R. Journal of Statistical Software 69: 1–7.

    Google Scholar 

  • Hanski, I., 1991. Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society 42: 17–38.

    Google Scholar 

  • Hauffe, T., C. Albrecht & T. Wilke, 2016. Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective. Biogeosciences 13: 2901–2911.

    Google Scholar 

  • Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. de Waard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B 270: 313–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen & W. Hallwachs, 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812–14817.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hijmans, R. J., E. Williams, & C. Vennes. 2016. Package ‘geosphere’.

  • Hoffman, M., C. Hilton-Taylor, A. Angulo, M. Böhm, T. M. Brooks, S. H. M. Butchart, K. E. Carpenter, J. Chanson, B. Collen, N. A. Cox, et al., 2010. The impact of conservation on the status of the world’s vertebrates. Science 330: 1503–1509.

    Google Scholar 

  • Hoverman, J. T., C. J. Davis, E. E. Werner, D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2011. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1105.

    Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Hubert, N., V. Calcagno, R. S. Etienne & N. Mouquet, 2015a. Metacommunity speciation models and their implication for diversification theory. Ecology Letters 18: 864–881.

    PubMed  Google Scholar 

  • Hubert, N., A. Kadarusman, F. Wibowo, D. Busson, S. Caruso, N. Sulandari, L. Nafiqoh, L. Rüber, J. C. Pouyaud, F. Avarre, R. Herder, P. Keith Hanner & R. K. Hadiaty, 2015b. DNA barcoding Indonesian freshwater fishes: challenges and prospects. DNA Barcodes 3: 144–169.

    Google Scholar 

  • Hubert, N., D. Lumbantobing, A. Sholihah, H. Dahruddin, F. Busson, S. Sauri, R. K. Hadiaty & P. Keith, 2019. Revisiting species boundaries and distribution ranges of Nemacheilus spp. (Cypriniformes: Nemacheilidae) and Rasbora spp. (Cypriniformes: Cyprinidae) in Java, Bali and Lombok through DNA barcodes: implications for conservation in a biodiversity hotspot. Conservation Genetics 20: 517–529.

    Google Scholar 

  • Hubert, N., E. Paradis, H. Bruggemann & S. Planes, 2011. Community assembly and diversification in Indo-Pacific coral reef fishes. Ecology and Evolution 1(3): 229–277.

    PubMed  PubMed Central  Google Scholar 

  • Hutama, A., H. Dahruddin, F. Busson, S. Sauri, P. Keith, R. K. Hadiaty, R. Hanner, B. Suryobroto & N. Hubert, 2017. Identifying spatially concordant evolutionary significant units across multiple species through DNA barcodes: Application to the conservation genetics of the freshwater fishes of Java and Bali. Global Ecology and Conservation 12: 170–187.

    Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia, or why there so many kinds of animals. American Naturalist 93: 145–159.

    Google Scholar 

  • Ivanova, N. V., T. S. Zemlak, R. H. Hanner & P. D. N. Hébert, 2007. Universal primers cocktails for fish DNA barcoding. Molecular Ecology Resources 7: 544–548.

    CAS  Google Scholar 

  • Kapli, P., S. Lutteropp, J. Zhang, K. Kobert, P. Pavlidis, A. Stamatakis & T. Flouri, 2017. Multi-rate poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33: 1630–1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keith, P., G. Marquet, C. Lord, D. Kalfatak & E. Vigneux, 2010. Poissons et Crustacés d’eau Douce du Vanuatu. Société Française d’Ichtyologie, Paris.

    Google Scholar 

  • Keith, P., G. Marquet, P. Gerbeaux, E. Vigneux & C. Lord, 2013. Poissons et Crustacés d’eau Douce de Polynésie. Société Française d’Ichthyologie, Paris.

    Google Scholar 

  • Keith, P., C. Lord & K. Maeda, 2015. Indo-Pacific Sicydiinae Gobies: Biodiversity, Life Traits and Conservation. Société Française d’Ichtyologie, Paris.

    Google Scholar 

  • Kekkonen, M. & P. D. N. Hebert, 2014. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14: 706–715.

    PubMed  PubMed Central  Google Scholar 

  • Kekkonen, M., M. Mutanen, L. Kaila, M. Nieminen & P. D. N. Hebert, 2015. Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS ONE 10: e0122481.

    PubMed  PubMed Central  Google Scholar 

  • Kembel, S. W., 2009. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters 12: 949–960.

    PubMed  Google Scholar 

  • Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg & C. O. Webb, 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.

    CAS  PubMed  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 15: 111–120.

    Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Knowlton, N., L. A. Weight, L. A. Solorzano, D. K. Mills & E. Bermingham, 1992. Divergence of proteins, mitochondrial DNA and reproductive compatibility across the Isthmus of Panama. Science 260: 1629–1632.

    Google Scholar 

  • Knowlton, N. & L. A. Weigt, 1998. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society London B 265: 2257–2263.

    Google Scholar 

  • Kottelat, M., A. J. Whitten, S. R. Kartikasari & S. Wirjoatmodjo, 1993. Freshwater Fishes of Western Indonesia and Sulawesi. Periplus, Singapore.

    Google Scholar 

  • Kraft, N. J., W. K. Cornwell, C. O. Webb & D. D. Ackerly, 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist 170: 271–283.

    PubMed  Google Scholar 

  • Kraft, N. J., R. Valencia & D. D. Ackerly, 2008. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322: 580–582.

    CAS  PubMed  Google Scholar 

  • Liu, M.-Y., Y.-X. Cai & C.-S. Tzeng, 2007. Molecular systematics of the freshwater prawn genus Macrobrachium Bate, 1868 (Crustacea: Decapoda: Palaemonidae) inferred from mtDNA sequences, with emphasis on East Asian species. Zoological Studies 46: 272.

    CAS  Google Scholar 

  • Logue, J. B., N. Mouquet, P. Hannes, H. Hillebrand & T. metacommunity working group, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology & Evolution 26: 482–491.

    Google Scholar 

  • Lohman, K., M. De Bruyn, T. Page, K. Von Rintelen, R. Hall, P. K. L. Ng, H.-T. Shih, G. R. Carvalho & T. Von Rintelen, 2011. Biogeography of the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics 42: 205–226.

    Google Scholar 

  • MacArthur, R. H. & R. Levins, 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377–387.

    Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.

    CAS  PubMed  Google Scholar 

  • McPeek, M. A., 2008. The ecological dynamics of clade diversification and community assembly. The American Naturalist 172: e270–e284.

    PubMed  Google Scholar 

  • Meyer, C. & G. Paulay, 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3: 2229–2238.

    CAS  Google Scholar 

  • Miralles, A. & M. Vences, 2013. New metrics for comparison of taxonomies eveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS ONE 8: e68242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz, C., 1994. Defining “Evolutionary Significant Units” for conservation. Trends in Ecology & Evolution 9: 373–375.

    CAS  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    CAS  PubMed  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara & M. H. H. Stevens, 2007. The vegan package. Community Ecology Package 10: 631–637.

    Google Scholar 

  • Page, T. J. & J. M. Hughes, 2007. Radically different scales of phylogeographic structuring within cryptic species of freshwater shrimp (Atyidae: Caridina). Limnology and Oceanography 52: 1055–1066.

    Google Scholar 

  • Paradis, E., 2010. Pegas: an R package for population genetics with an integrated modular approach. Bioinformatics 26: 419–420.

    CAS  PubMed  Google Scholar 

  • Pianka, E. R., 1970. On r and K selection. The American Naturalist 104: 592–597.

    Google Scholar 

  • Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin & A. P. Vogler, 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–606.

    PubMed  Google Scholar 

  • Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.

    CAS  PubMed  Google Scholar 

  • R_Core_Team, 2014. R: A Language and Environment for Statistical Computing. R Core Team, Vienna.

    Google Scholar 

  • Ratnasingham, S. & P. D. N. Hebert, 2007. BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Resources 7: 355–364.

    CAS  Google Scholar 

  • Ratnasingham, S. & P. D. N. Hebert, 2013. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8: e66213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklefs, R. E., 1987. Community diversity: relative roles of local and regional processes. Science 235: 167–171.

    CAS  PubMed  Google Scholar 

  • Ricklefs, R. E. & D. Schluter, 1993. Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, Chicago.

    Google Scholar 

  • Sale, P. F., 1977. Maintenance of high diversity in coral reef fish communities. The American Naturalist 111: 337–359.

    Google Scholar 

  • Sale, P. F. & R. Dybdal, 1978. Determinants of community structure for coral reef fishes in isolated coral heads at lagoonal and reef slope sites. Oecologia 34: 57–74.

    PubMed  Google Scholar 

  • Sale, P. F. & D. M. Williams, 1982. Community structure of coral reef fishes: are the patterns more than those expected by chance? The American Naturalist 120: 121–127.

    Google Scholar 

  • Schipper, J., J. S. Chanson, F. Chiozza, N. A. Cox, M. Hoffmann, V. Katariya, J. Lamoreux, A. S. L. Rodrigues, S. N. Stuart & H. J. Temple, 2008. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322: 225–230.

    CAS  PubMed  Google Scholar 

  • Smith, A. M., J. J. Rodriguez, J. B. Whitfield, A. R. Deans, D. H. Janzen, W. Hallwachs & P. D. N. Hebert, 2008. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America 105: 12359–12364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, M. A., D. M. Wood, D. H. Janzen, W. Hallwachs & P. D. N. Hebert, 2007. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences of the United States of America 104: 4967–4972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima, F., 1983. Evolutionary relationships of DNA sequences in finite populations. Genetics 105: 437–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vamosi, J. C. & S. M. Vamosi, 2006. Body size, rarity, and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Diversity and Distributions 13: 1–10.

    Google Scholar 

  • Vamosi, S. M., B. Heard, J. C. Vamosi & C. O. Webb, 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology 18: 572–592.

    CAS  PubMed  Google Scholar 

  • Veech, J. A., 2013. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22: 252–260.

    Google Scholar 

  • Vogler, A. P. & R. DeSalle, 1994. Diagnosing units of conservation management. Conservation Biology 6: 170–178.

    Google Scholar 

  • Von Rintelen, K., T. Von Rintelen & M. Glaubrecht, 2007. Molecular phylogeny and diversification of freshwater shrimps (Decapoda, Atyidae, Caridina) from ancient Lake Poso (Sulawesi, Indonesia): the importance of being colourful. Molecular Phylogenetics and Evolution 45: 1033–1041.

    Google Scholar 

  • von Rintelen, K., M. Glaubrecht, C. D. Schubart, A. Wessel & T. von Rintelen, 2010. Adaptive radiation and ecological diversification of Sulawesi’S ancient lake shrimps. Evolution 64: 3287–3299.

    Google Scholar 

  • Voris, H. K., 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1153–1167.

    Google Scholar 

  • Webb, C. O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist 156: 146–155.

    Google Scholar 

  • Webb, C. O., G. S. Gilbert & M. J. Donoghue, 2006. Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87: S123–S131.

    PubMed  Google Scholar 

  • Woodruff, D. S., 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugium-phase biodiversity. Biodiversity and Conservation 19: 919–941.

    Google Scholar 

  • Wowor, D., 2004. A Systematic Revision of the Freshwater Prawns of the Genus Macrobrachium (Crustacea: Decapoda: Caridea: Palaemonidae) of Sundaland. National University of Singapore, Singapore.

    Google Scholar 

  • Wowor, D., Y. Cai & P. K. L. Ng, 2004. Crustacea: Decapoda, Caridea. In Yule, C. M. & Y. H. Sen (eds), Freshwater Invertebrates of the Malaysian region. Academy of Sciences Malaysia, Kuala Lumpur.

    Google Scholar 

  • Wowor, D., V. Muthu, R. Meier, M. Balke, Y. Cai & P. K. L. Ng, 2009. Evolution of life history traits in Asian freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae) based on multilocus molecular phylogenetic analysis. Molecular Phylogenetics and Evolution 52: 340–350.

    CAS  PubMed  Google Scholar 

  • Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Siti Nuramaliati Prijono, Dr. Bambang Sunarko, Dr. Witjaksono, Mohammad Irham Msc., Dr. Marlina Adriyani, Ruliyana Susanti, Dr. Rosichon Ubaidillah, Dr. Hari Sutrisno and Muhamad Syamsul Arifin Zein Msc, at Research Centre for Biology (RCB-LIPI); Jean-Paul Toutain, Robert Arfi, Valérie Verdier and Jean-François Agnèse from the “Institut de Recherche pour le Développement”; Joel Le Bail and Nicolas Gascoin at the French embassy in Jakarta for their continuous support. We are thankful to late Renny Kurnia Hadiaty and Sopian Sauri at RCB-LIPI, Sumanta at IRD Jakarta for their help during the field sampling in East Java and Bali. Part of the present study was funded by the Institut de Recherche pour le Développement (UMR 226 ISEM and IRD through incentive funds), the MNHN (UMR BOREA), the RCB-LIPI, the French Ichthyological Society (SFI), the Foundation de France and the French embassy in Jakarta. The Indonesian Ministry of Research and Technology approved this study, and field sampling was conducted according to the research permits 097/SIP/FRP/SM/IV/2014 for Philippe Keith, 60/EXT/SIP/FRP/SM/XI/2014 for Frédéric Busson and 41/EXT/SIP/FRP/SM/VIII/2014 for Nicolas Hubert. Sequence analysis was aided by funding from the government of Canada through Genome Canada and the Ontario Genomics Institute in support of the International Barcode of Life project. We thank Paul Hébert and Evgeny Zakharov as well as BOLD and CCDB staffs at the University of Guelph for their valuable support. We are also very grateful to our editor, Diego Fontaneto, as well as the two anonymous reviewers for their insightful feedbacks on the earlier version of the manuscript. This publication has ISEM Number 2019-189 SUD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hubert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Neighbor-joining phenogram based on the 204 individual COI sequences. Supplementary material 1 (PDF 48 kb)

10750_2019_4127_MOESM2_ESM.xlsx

Occurrence data for the 23 species included in the present study and based on 1583 observations across 19 sites. Supplementary material 2 (XLSX 11 kb)

Details of BOLD records for the 204 specimens with a COI sequence. Supplementary material 3 (XLSX 58 kb)

Details of the species delimitation schemes. Supplementary material 4 (XLSX 16 kb)

10750_2019_4127_MOESM5_ESM.xlsx

Occurrence data for the 30 OTUs detected in the present study across the 19 sites. Supplementary material 5 (XLSX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernawati, R., Nurhaman, U., Busson, F. et al. Exploring community assembly among Javanese and Balinese freshwater shrimps (Atyidae, Palaemonidae) through DNA barcodes. Hydrobiologia 847, 647–663 (2020). https://doi.org/10.1007/s10750-019-04127-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04127-7

Keywords

  • Caridina
  • Macrobrachium
  • Species delimitation
  • Dispersal
  • Phylogenetic community structure
  • Lottery model