Skip to main content
Log in

Complementary information from fatty acid and nutrient stoichiometry data improve stream food web analyses

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Our study characterized the food web of a shaded stream to investigate consumer food choices and food source quality. We measured fatty acids (FA) and elemental carbon (C), nitrogen (N), and phosphorus (P) of autochthonous and allochthonous resources and macroinvertebrates (Hydropsyche sp., Ephemerella sp., Rhyacophila sp., and crayfish-Cambaridae). We examined trophic links using FAs and identified food source quality based on essential fatty acids (EFAs) and elemental nutrients. Autochthonous food sources had greater EFA content (20:5ω3 in periphyton, 20:4ω6 in bryophyte Hygrohypnum) than terrestrial matter. FAs confirmed the grazing nature of Ephemerella. Periphyton may release this invertebrate from N and P limitation, and FA biochemical constraints. Limitation by elemental nutrients, but not FAs, may exist for Hydropsyche if feeding solely on transported matter. Crayfish FA signature suggests consumption of the bryophyte Hygrohypnum as well as terrestrial matter. Our data demonstrate that autochthonous sources are crucial for many invertebrates in shaded streams, despite limited light availability. However, detrital food sources can also be important and their contribution to stream food webs should not be overlooked. Our study highlights the importance of measuring nutrient and biochemical constraints in order to understand factors driving secondary production in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arce-Funck, J. A., A. Bec, F. Perrière, V. Felten & M. Danger, 2015. Aquatic hyphomycetes: a potential source of polyunsaturated fatty acids in detritus-based stream food webs. Fungal Ecology 13: 205–210.

    Google Scholar 

  • Atkinson, C. L., K. A. Capps, A. T. Rugenski & M. J. Vanni, 2017. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biological Reviews 92: 2003–2023.

    PubMed  Google Scholar 

  • Back, J. A. & R. S. King, 2013. Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshwater Science 32: 837–848.

    Google Scholar 

  • Barbour, M.T., J. Gerritsen, B.D. Snyder, & J.B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA/841-B-99-002. U.S. EPA, Office of Water, Washington, D.C. 197 pp. plus appendices.

  • Bec, A., C. Desvilettes, A. Véra, D. Fontvieille & G. Bourdier, 2003. Nutritional value of different food sources for the benthic Daphnidae Simocephalus vetulus: role of fatty acids. Archiv für Hydrobiologie 156: 145–163.

    CAS  Google Scholar 

  • Bec, A., D. Martin-Creuzburg & E. von Elert, 2006. Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnology and Oceanography 51: 1699–1707.

    Google Scholar 

  • Bec, A., M. E. Perga, A. Koussoroplis, G. Bardoux, C. Desvilettes, G. Bourdier & A. Mariotti, 2011. Assessing the reliability of fatty acid–specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution 2: 651–659.

    Google Scholar 

  • Blomquist, G. J., C. E. Borgeson & M. Vundla, 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochemistry 21: 99–106.

    CAS  Google Scholar 

  • Bowden, W., D. Arscott, D. Pappathanasi, J. Finlay, J. Glime, J. LaCroix, C.-L. Liao, A. Hershey, T. Lampella & B. Peterson, 1999. Roles of bryophytes in stream ecosystems. Journal of the North American Benthological Society 18: 151–184.

    Google Scholar 

  • Brett, M.T., & D.C. Müller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38 (3):483–499.

    Google Scholar 

  • Brett, M. T., S. E. Bunn, S. Chandra, A. W. Galloway, F. Guo, M. J. Kainz, P. Kankaala, D. C. Lau, T. P. Moulton & M. E. Power, 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62: 833–853.

    CAS  Google Scholar 

  • Bumpers, P. M., A. D. Rosemond, J. C. Maerz & J. P. Benstead, 2017. Experimental nutrient enrichment of forest streams increases energy flow to predators along greener food-web pathways. Freshwater Biology 62: 1794–1805.

    CAS  Google Scholar 

  • Burns, D., T. Vitvar, J. McDonnell, J. Hassett, J. Duncan & C. Kendall, 2005. Effects of suburban development on runoff generation in the Croton River basin, New York, USA. Journal of Hydrology 311 (1–4):266–281.

    Google Scholar 

  • Cashman, M. J., F. Pilotto, G. L. Harvey, G. Wharton & M. T. Pusch, 2016. Combined stable-isotope and fatty-acid analyses demonstrate that large wood increases the autochthonous trophic base of a macroinvertebrate assemblage. Freshwater Biology 61: 549–564.

    CAS  Google Scholar 

  • Collins, S. M., T. J. Kohler, S. A. Thomas, W. W. Fetzer & A. S. Flecker, 2016. The importance of terrestrial subsidies in stream food webs varies along a stream size gradient. Oikos 125: 674–685.

    Google Scholar 

  • Crenier, C., J. Arce-Funck, A. Bec, E. Billoir, F. Perrière, J. Leflaive, F. Guérold, V. Felten & M. Danger, 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshwater Biology 62: 1155–1167.

    CAS  Google Scholar 

  • Cross, W. F., J. P. Benstead, A. D. Rosemond & J. Bruce Wallace, 2003. Consumer-resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732.

    Google Scholar 

  • Cross, W. F., J. P. Benstead, P. C. Frost & S. A. Thomas, 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology 50: 1895–1912.

    CAS  Google Scholar 

  • D’Abramo, L. R. & S. S. Sheen, 1993. Polyunsaturated fatty acid nutrition in juvenile freshwater prawn Macrobrachium rosenbergii. Aquaculture 115: 63–86.

    Google Scholar 

  • Danger, M., J. Arce Funck, S. Devin, J. Heberle & V. Felten, 2013. Phosphorus content in detritus controls life-history traits of a detritivore. Functional Ecology 27: 807–815.

    Google Scholar 

  • Demi, L. M., J. P. Benstead, A. D. Rosemond & J. C. Maerz, 2018. Litter P content drives consumer production in detritus-based streams spanning an experimental N: P gradient. Ecology 99: 347–359.

    PubMed  Google Scholar 

  • Desvilettes, C., G. Bourdier, J. C. Breton & P. Combrouze, 1994. Fatty acids as organic markers for the study of trophic relationships in littoral cladoceran communities of a pond. Journal of Plankton Research 16: 643–659.

    Google Scholar 

  • Erdozain, M., K. Kidd, D. Kreutzweiser & P. Sibley, 2019. Increased reliance of stream macroinvertebrates on terrestrial food sources linked to forest management intensity. Ecological Applications 29: e01889.

    PubMed  Google Scholar 

  • Filipiak, M., 2016. Pollen stoichiometry may influence detrital terrestrial and aquatic food webs. Frontiers in Ecology and Evolution 4: 138.

    Google Scholar 

  • Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen & V. Matzek, 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109: 18–28.

    Google Scholar 

  • Frost, P. C., J. P. Benstead, W. F. Cross, H. Hillebrand, J. H. Larson, M. A. Xenopoulos & T. Yoshida, 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9: 774–779.

    PubMed  Google Scholar 

  • García, L., I. Pardo, W. F. Cross & J. S. Richardson, 2017. Moderate nutrient enrichment affects algal and detritus pathways differently in a temperate rainforest stream. Aquatic Sciences 79: 941–952.

    Google Scholar 

  • Georgian, T. & J. H. Thorp, 1992. Effects of microhabitat selection on feeding rates of net-spinning caddisfly larvae. Ecology 73: 229–240.

    Google Scholar 

  • Glibert, P. M., J. J. Middelburg, J. W. McClelland & M. Jake Vander Zanden, 2019. Stable isotope tracers: enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnology and Oceanography 64: 950–981.

    CAS  Google Scholar 

  • Guo, F., M. J. Kainz, F. Sheldon & S. E. Bunn, 2016. Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia 181: 449–462.

    PubMed  Google Scholar 

  • Guo, F., S. E. Bunn, M. T. Brett & M. J. Kainz, 2017. Polyunsaturated fatty acids in stream food webs high dissimilarity among producers and consumers. Freshwater Biology 62: 1325–1334.

    CAS  Google Scholar 

  • Guo, F., S. E. Bunn, M. T. Brett, B. Fry, H. Hager, X. Ouyang & M. J. Kainz, 2018. Feeding strategies for the acquisition of high-quality food sources in stream macroinvertebrates: collecting, integrating, and mixed feeding. Limnology and Oceanography 63: 1964–1978.

    PubMed  PubMed Central  Google Scholar 

  • Halvorson, H. M., J. T. Scott, A. J. Sanders & M. A. Evans-White, 2015. A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshwater Science 34: 508–518.

    Google Scholar 

  • Hanna, V. S. & E. A. A. Hafez, 2018. Synopsis of arachidonic acid metabolism: a review. Journal of Advanced Research 11: 23–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson, B. J., K. W. Cummins, A. S. Cargill & R. R. Lowry, 1985. Lipid content, fatty acid composition and the effect of diet on fats of aquatic insects. Comparative Biochemistry and Physiology B 80: 257–276.

    Google Scholar 

  • Harlıoğlu, M. M., K. Köprücü, A. G. Harlıoğlu, Ö. Yılmaz, S. Mişe Yonar, S. Aydın & T. Çakmak Duran, 2015. Effects of dietary n-3 polyunsaturated fatty acids on the nutritional quality of abdomen meat and hepatopancreas in a freshwater crayfish (Astacus leptodactylus). Journal of Food Composition and Analysis 41: 144–150.

    Google Scholar 

  • Hazel, J. R., 1995. Thermal Aaaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology 57: 19–42.

    CAS  PubMed  Google Scholar 

  • Hellmann, C., B. Wissel & C. Winkelmann, 2013. Omnivores as seasonally important predators in a stream food web. Freshwater Science 32: 548–562.

    Google Scholar 

  • Hershey, A. E., R. M. Northington, J. C. Finlay & B. J. Peterson, 2017. Chapter 23—stable isotopes in stream food webs. In Lamberti, G. A. & F. R. Hauer (eds), Methods in Stream Ecology, 3rd ed. Academic Press, New York: 3–20.

    Google Scholar 

  • Hill, W. R., J. Rinchard & S. Czesny, 2011. Light, nutrients and the fatty acid composition of stream periphyton. Freshwater Biology 56: 1825–1836.

    CAS  Google Scholar 

  • Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. BioScience 64: 870–882.

    Google Scholar 

  • Ishikawa, N., M. Yamane, H. Suga, N. Ogawa, Y. Yokoyama & N. Ohkouchi, 2015. Chlorophyll a-specific δ 14 C, δ 13 C and δ 15 N values in stream periphyton: implications for aquatic food web studies. Biogeosciences 12: 6781–6789.

    CAS  Google Scholar 

  • Kalachova, G., M. Gladyshev, N. Sushchik & O. Makhutova, 2011. Water moss as a food item of the zoobenthos in the Yenisei River. Open Life Sciences 6: 236–245.

    Google Scholar 

  • Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series 120: 231–241.

    CAS  Google Scholar 

  • Lancaster, J., D. C. Bradley, A. Hogan & S. Waldron, 2005. Intraguild omnivory in predatory stream insects. Journal of Animal Ecology 74: 619–629.

    Google Scholar 

  • Lauridsen, R. B., F. K. Edwards, W. F. Cross, G. Woodward, A. G. Hildrew & J. I. Jones, 2014. Consequences of inferring diet from feeding guilds when estimating and interpreting consumer-resource stoichiometry. Freshwater Biology 59: 1497–1508.

    Google Scholar 

  • Lemoine, N. P., S. T. Giery & D. E. Burkepile, 2014. Differing nutritional constraints of consumers across ecosystems. Oecologia 174: 1367–1376.

    PubMed  Google Scholar 

  • Liess, A. & H. Hillebrand, 2006. Role of nutrient supply in grazer-periphyton interactions: reciprocal influences of periphyton and grazer nutrient stoichiometry. Journal of the North American Benthological Society 25: 632–642.

    Google Scholar 

  • Lu, Y. H., E. A. Canuel, J. E. Bauer & R. Chambers, 2014. Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquatic Sciences 76: 419–436.

    CAS  Google Scholar 

  • Magoulick, D. D. & G. L. Piercey, 2016. Trophic overlap between native and invasive stream crayfish. Hydrobiologia 766: 237–246.

    Google Scholar 

  • Masclaux, H., M.-E. Perga, M. Kagami, C. Desvilettes, G. Bourdier & A. Bec, 2013. How pollen organic matter enters freshwater food webs. Limnology and Oceanography 58: 1185–1195.

    CAS  Google Scholar 

  • McWilliam-Hughes, S. M., T. D. Jardine & R. A. Cunjak, 2009. In stream C sources for primary consumers in two temperate, oligotrophic rivers: possible evidence of bryophytes as a food source. Journal of the North American Benthological Society 28: 733–743.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall Hunt, Dubuque.

    Google Scholar 

  • Moe, S. J., R. S. Stelzer, M. R. Forman, W. S. Harpole, T. Daufresne & T. Yoshida, 2005. Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos 109: 29–39.

    Google Scholar 

  • Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster & J. L. Meyer, 2000. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition. Journal of the North American Benthological Society 19: 145–157.

    Google Scholar 

  • Muller-Navarra, D. C., 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv fur Hydrobiologie 132: 297–307.

    Google Scholar 

  • Muller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.

    CAS  PubMed  Google Scholar 

  • Napolitano, G. E., 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems. In Arts, M. T. & B. C. Wainman (eds), Lipids in Freshwater Ecosystems. Springer, New York: 21–44.

    Google Scholar 

  • Napolitano, G. E., R. J. Pollero, A. M. Gayoso, B. A. MacDonald & R. J. Thompson, 1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25: 739–755.

    CAS  Google Scholar 

  • O’Brien, P. J. & J. D. Wehr, 2010. Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. In Stevenson, R. J. & S. Sabater (eds), Global Change and River Ecosystems-Implications for Structure, Function and EcosystemServices. Springer, Netherlands: 89–105.

    Google Scholar 

  • Persson, J., P. Fink, A. Goto, J. M. Hood, J. Jonas & S. Kato, 2010. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119: 741–751.

    CAS  Google Scholar 

  • Ravet, J. L., J. Persson & M. T. Brett, 2012. Threshold dietary polyunsaturated fatty acid concentrations for Daphnia pulex growth and reproduction. Inland Waters 2: 199–209.

    CAS  Google Scholar 

  • Risse-Buhl, U., M. Karsubke, J. Schlief, C. Baschien, M. Weitere & M. Mutz, 2012. Aquatic protists modulate the microbial activity associated with mineral surfaces and leaf litter. Aquatic Microbial Ecology 66: 133–147.

    Google Scholar 

  • Rosi-Marshall, E. J., K. L. Vallis, C. V. Baxter & J. M. Davis, 2016. Retesting a prediction of the river continuum concept: autochthonous versus allochthonous resources in the diets of invertebrates. Freshwater Science 35: 534–543.

    Google Scholar 

  • Sabater, S., J. Artigas, A. Gaudes, I. Munoz, G. Urrea & A. M. Romani, 2011. Long-term moderate nutrient inputs enhance autotrophy in a forested mediterranean stream. Freshwater Biology 56: 1266–1280.

    CAS  Google Scholar 

  • Santonja, M., L. Pellan & C. Piscart, 2018. Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecology and Evolution 8: 2542–2553.

    PubMed  PubMed Central  Google Scholar 

  • Saoud, I., A. Garza De Yta & J. Ghanawi, 2012. A review of nutritional biology and dietary requirements of redclaw crayfish Cherax quadricarinatus (von Martens 1868). Aquaculture Nutrition 18: 349–368.

    CAS  Google Scholar 

  • Sikora, A. B., T. Petzoldt, P. Dawidowicz & E. von Elert, 2016. Demands of eicosapentaenoic acid (EPA) in Daphnia: are they dependent on body size? Oecologia 182: 405–417.

    PubMed  PubMed Central  Google Scholar 

  • Sitters, J., C. L. Atkinson, N. Guelzow, P. Kelly & L. L. Sullivan, 2015. Spatial stoichiometry: cross-ecosystem material flows and their impact on recipient ecosystems and organisms. Oikos 124: 920–930.

    Google Scholar 

  • Small, G. E. & C. M. Pringle, 2010. Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a neotropical stream. Oecologia 162: 581–590.

    PubMed  Google Scholar 

  • Snyder, M. N., G. E. Small & C. M. Pringle, 2015. Diet-switching by omnivorous freshwater shrimp diminishes differences in nutrient recycling rates and body stoichiometry across a food quality gradient. Freshwater Biology 60: 526–536.

    CAS  Google Scholar 

  • Sokal, R. R. & F. Rohlf, 1995. Biometry: the principles and practice of statistics in biological research. Freeman and Company, New York.

    Google Scholar 

  • Solórzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–758.

    Google Scholar 

  • Sperfeld, E. & A. Wacker, 2012. Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs. Freshwater Biology 57: 497–508.

    CAS  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Sushchik, N. N., M. I. Gladyshev, A. V. Moskvichova, O. N. Makhutova & G. S. Kalachova, 2003. Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei river. Comparative Biochemistry and Physiology 134: 111–122.

    CAS  PubMed  Google Scholar 

  • Tamura, S. & T. Kagaya, 2019. Food habits of invertebrate grazers in a forested stream: variations according to taxonomic affiliation, flow habitat, and body size. Hydrobiologia 841: 109–120.

    Google Scholar 

  • Taube, R., L. Ganzert, H.-P. Grossart, G. Gleixner & K. Premke, 2018. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes. Science of the Total Environment 610: 469–481.

    PubMed  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Google Scholar 

  • Thut, R. N., 1969. Feeding habits of larvae of seven Rhyacophila (Trichoptera: Rhyacophilidae) species with notes on other life-history features. Annals of the Entomological Society of America 62: 894–898.

    Google Scholar 

  • Torres-Ruiz, M. & J. D. Wehr, 2010. Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content. Hydrobiologia 651: 265–278.

    CAS  Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society 26: 509–522.

    Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2010. Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. Journal of the North American Benthological Society 29: 803–813.

    Google Scholar 

  • Twining, C. W., J. T. Brenna, N. G. Hairston Jr. & A. S. Flecker, 2016. Highly unsaturated fatty acids in nature: what we know and what we need to learn. Oikos 125: 749–760.

    CAS  Google Scholar 

  • Twining, C. W., D. C. Josephson, C. E. Kraft, J. T. Brenna, P. Lawrence & A. S. Flecker, 2017. Limited seasonal variation in food quality and foodweb structure in an Adirondack stream: insights from fatty acids. Freshwater Science 36: 877–892.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries & Aquatic Sciences 37: 130–137.

    Google Scholar 

  • Volk, C. & P. Kiffney, 2012. Comparison of fatty acids and elemental nutrients in periphyton, invertebrates, and cutthroat trout (Oncorhynchus clarki) in conifer and alder streams of western Washington state. Aquatic Ecology 46: 85–99.

    CAS  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.

    Google Scholar 

  • Weers, P. M. M. & R. D. Gulati, 1997. Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in Chlamydomonas reinhardtii. Limnology and Oceanography 42: 1584–1589.

    CAS  Google Scholar 

  • Wehr, J. D., A. Empain, C. Mouvet, P. J. Say & B. A. Whitton, 1983. Methods for processing aquatic mosses used as monitors of heavy metals. Water Research 17: 985–992.

    CAS  Google Scholar 

  • Whorley, S. B. & J. D. Wehr, 2016. Connecting algal taxonomic information to essential fatty acid content in agricultural streams. Phycologia 55: 531–542.

    CAS  Google Scholar 

  • Yohannes, E. & K.-O. Rothhaupt, 2018. Dietary nutrient allocation to somatic tissue synthesis in emerging subimago freshwater mayfly Ephemera danica. BMC Ecology 18: 57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, P., R. F. van den Berg, C. H. van Leeuwen, B. A. Blonk & E. S. Bakker, 2018. Aquatic omnivores shift their trophic position towards increased plant consumption as plant stoichiometry becomes more similar to their body stoichiometry. PLoS ONE 13: e0204116.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Fordham University, The Louis Calder Center, and the New York State Biodiversity Research Institute for funding. We thank the anonymous reviewers for their insightful comments which greatly improved the final version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Torres-Ruiz.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Ruiz, M., Wehr, J.D. Complementary information from fatty acid and nutrient stoichiometry data improve stream food web analyses. Hydrobiologia 847, 629–645 (2020). https://doi.org/10.1007/s10750-019-04126-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04126-8

Keywords

Navigation