Skip to main content
Log in

Limiting similarity in subterranean ecosystems: a case of niche differentiation in Elmidae (Coleoptera) from epigean and hypogean environments

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Environmental pressures in caves can act on species, selecting functional attributes that allow their best performance in such habitats. Caves are simplified habitats, which makes them ideal for testing ecological models more accurately. From this perspective, we examined whether competition limits the morphological similarity among individuals of the species Heterelmis sp. and Hexacylloepus sp. (Coleoptera—Elmidae), along a surface-subterranean gradient. We used a Mann–Whitney test to assess morphological differences among individuals. Furthermore, we used the outlying mean index to explore the extent of niche overlap between the two species in surface and subterranean environments. The results indicate that in a cave environment, organisms avoid niche overlap by differing their body size and environmental preferences, and such avoidance is likely related to the increase of competitive interactions. Hence, it is plausible to assume that morphological modifications, such as increased body size, may occur in response to evolution within cave environments, partly due to the reduction of similarity between co-occurring species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, C. R., A. S. Garmestani, T. D. Havlicek, P. A. Marquet, G. D. Peterson, C. Restrepo, C. A. Stow & B. E. Weeks, 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9: 630–643.

    CAS  PubMed  Google Scholar 

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves & G. Sparovek, 2014. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. Institute of Information and Mathematical Sciences, Auckland.

    Google Scholar 

  • Begon, M., C. R. Townsend & J. L. Harper, 2006. Ecology: From Individuals to Ecosystems. Blakwell Publishing, Oxford.

    Google Scholar 

  • Bleiker, K. P. & J. Régnière, 2015. Determining the instar of mountain pine beetle (Coleoptera: Curculionidae) larvae by the width of their head capsules. The Canadian Entomologist 147: 635–640.

    Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Google Scholar 

  • Castañeda-Vildózola, Á., H. González-Hernández, A. Equihua-Martínez, J. Valdez-Carrasco, J. E. Peña, L. E. Cazado & O. Franco-Mora, 2016. Head capsule width is useful for determining larval instar in Heilipus lauri (Coleoptera: Curculionidae). Florida Entomologist 99: 822–825.

    Google Scholar 

  • Chesson, P. L., 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. Theoretical Population Biology 28: 263–287.

    Google Scholar 

  • Chesson, P., 2000. General theory of competitive coexistence in spatially-varying environments. Theoretical population biology 58: 211–237.

    CAS  PubMed  Google Scholar 

  • Christiansen, K., 1992. Biological Processes in Space and Time: Cave Life in The Light of Modern Evolutionary Theory. In Camacho, A. I. (ed.), The Natural History of Biospeleology. Editorial CSIC-CSIC Press, Madrid: 453–478.

    Google Scholar 

  • Compin, A. & R. Céréghino, 2003. Sensitivity of aquatic insect species richness to disturbance in the Adour-Garonne stream system (France). Ecological Indicators 3: 135–142.

    Google Scholar 

  • Culver, D. C., 1982. Cave Life: Evolution and Ecology. Harvard University Press, Cambridge.

    Google Scholar 

  • Culver, D. C. & T. Pipan, 2009. The Biology of Caves and Other Subterranean Habitats. Oxford University Press, Oxônia.

    Google Scholar 

  • Culver, D. C., T. C. Kane & D. W. Fong, 1995. Adaptation and Natural Selection in Caves. Harvard University Press, Cambridge.

    Google Scholar 

  • Di Dato, P., L. Mancini, L. Tancioni & M. Scardi, 2005. A neural network approach to the prediction of benthic macroinvertebrate fauna composition in rivers. In Lek, S., M. Scardi, P. Vardonscot & S. Jorgensen (eds.), Modelling Community Structure in Freswater Ecosystems. Springer, Heidelberg: 147–157.

    Google Scholar 

  • Dolédec, S., D. Chessel & C. Gimaret-Carpentier, 2000. Niche separation in community analysis: a new method. Ecology and Society 81: 2914–2927.

    Google Scholar 

  • Dole-olivier, M. J., F. Malard, D. Martin, T. L. Bure & J. Gibert, 2009. Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshwater Biology 54: 797–813.

    CAS  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Google Scholar 

  • Dumas, P., C. Bou & J. Gibert, 2001. Groundwater macrocrustaceans as natural indicators of the Ariège alluvial aquifer. International Review of Hydrobiology 86: 619–633.

    CAS  Google Scholar 

  • Dyar, H. G., 1890. The number of molts of lepidopterous larvae. Psyche 5: 420–422.

    Google Scholar 

  • Farjalla, V. F., D. S. Srivastava, N. A. C. Marino, F. D. Azevedo, V. Dib, P. M. Lopes, A. S. Rosado, R. L. Bozelli & F. A. Esteves, 2012. Ecological determinism increases with organism size. Ecology 93: 1752–1759.

    PubMed  Google Scholar 

  • Fišer, C., A. Blejec & P. Trontelj, 2012. Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biology Letters 8: 578–581.

    PubMed  PubMed Central  Google Scholar 

  • Fišer, C., R. Luštrik, S. Sarbu, J. F. Flot & P. Trontelj, 2015. Morphological evolution of coexisting amphipod species pairs from sulfidic caves suggests competitive interactions and character displacement, but no environmental filtering and convergence. PLoS ONE 10: e0123535.

    PubMed  PubMed Central  Google Scholar 

  • Gause, G. F., 1934. The Struggle for Existence: A Classic of Mathematical Biology and Ecology. Willians and Wilkins Press, Baltimore.

    Google Scholar 

  • Gilbert, J. & L. Deharveg, 2002. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52: 473–481.

    Google Scholar 

  • Hahn, H. J. & A. Fuchs, 2009. Distribution patterns of groundwater communities across aquifer types in south-western Germany. Freshwater Biology 54: 848–860.

    Google Scholar 

  • Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.

    CAS  PubMed  Google Scholar 

  • Hutchinson, G. E., 1959. Why are there so many kinds of animals? The American Naturalist 93: 145–159.

    Google Scholar 

  • IEF- Instituto Estadual de Florestas, 2014. Estudo Técnico para Ampliação dos Limites do Parque Estadual da Lapa Grande, município de Montes Claros, MG. IEF, Belo Horizonte.

    Google Scholar 

  • Kane, T. & C. Richardson, 2012. Natural Selections. In White, W. B. & D. C. Culver (eds.), Encyclopedia of Caves. Elsevier, Amsterdam: 409–411.

    Google Scholar 

  • Kleyer, M., S. Dray, F. Bello, J. Leps, R. Pakeman, B. Strauss, W. Thuiller & S. Lavorel, 2012. Assessing species and community functional responses to environmental gradients: which multivariate methods? Journal of Vegetation Science 23: 805–821.

    Google Scholar 

  • Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller & J. M. Levine, 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592–599.

    Google Scholar 

  • Lamouroux, N., S. Dolédec & S. Bayraud, 2004. Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society 23: 449–466.

    Google Scholar 

  • Lebrija-Trejos, E., E. Pérez-García, J. Meave & L. Pooter, 2010. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91: 386–398.

    PubMed  Google Scholar 

  • Logan, J. A., B. J. Bentz, J. C. Vandygriff & D. L. Turner, 1998. General program for determining instar distributions from headcapsule widths: example analysis of mountain pine beetle (Coleoptera: Scolytide) data. Environmental Entomology 27: 555–563.

    Google Scholar 

  • MacArthur, R. H. & R. Levins, 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377–385.

    Google Scholar 

  • Mammola, S., C. Pedro, D. Culver, R. L. Louis, F. Ferreira, M. Cene, D. M. P. Galassi, C. Griebler, S. Halse, W. F. Humphreys, M. Isaia, F. Malard, A. Martinez, O. T. Moldovan, M. L. Niemiller, M. Pavlek, A. S. P. S. Reboleira, M. Souza-Silva, E. C. Teeling, J. J. Wynne & M. Zagmajster, 2019. Scientists’ warning on the conservation of subterranean ecosystems. BioScience 69: 641–650.

    Google Scholar 

  • Merrit, R. W., K. M. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America. Kendall Hunt Publishing, Dubuque.

    Google Scholar 

  • Messina, F. J., 2004. Predictable modification of body size and competitive ability following a host shift by a seed beetle. Evolution 58: 2788–2797.

    PubMed  Google Scholar 

  • Oliver, I. & A. J. Beattie, 1996. Invertebrate morphoespecies as surrogates for species: a case study. Conservation Biology 1: 99–109.

    Google Scholar 

  • Panzavolta, T., 2007. Instar determination for Pissodes castaneus (Coleoptera: Curculionidae) using head capsule widths and lengths. Environmental Entomology 36: 1054–1058.

    CAS  PubMed  Google Scholar 

  • Paran, F., F. Malard, J. Mathieu, M. Lafont, D. M. P. Galassi & P. Marmonier, 2005. Distribution of groundwater invertebrates along an environmental gradient in a shallow water-table aquifer. In Gibert, J. (ed.), Symposium on World Subterranean Biodiversity. CNRS-UCBL, Villeurbanne: 99–105.

    Google Scholar 

  • Passow, C. N., R. Greenway, L. Arias-Rodriguez, P. D. Jeyasingh & M. Tobler, 2015. Reduction of energetic demands through modification of body size and routine metabolic rates in extremophile fish. Physiological and Biochemical Zoology 88: 371–383.

    PubMed  Google Scholar 

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. R. Cappaert, 2006. Western Pilot Study: Field Operations Manual For Wadeable Streams. U.S. Environmental Protection Agency, Cicinati.

    Google Scholar 

  • Perry, G. & E. Pianka, 1997. Animal foraging: past, present and future. Trends in Ecology & Evolution 12: 360–364.

    CAS  Google Scholar 

  • Persson, L., 1985. Asymmetrical competition: are larger animals competitively. The American Naturalist 126: 261–266.

    Google Scholar 

  • Pipan, T. & D. C. Culver, 2017. The unity and diversity of the subterranean realm with respect to invertebrate body size. Journal of Cave Karst Studies 79: 1–9.

    Google Scholar 

  • Pyke, G. H., 1977. Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52: 137–154.

    Google Scholar 

  • R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Richardson, J. S., 2008. Aquatic arthropods and forestry: effects of large-scale land use on aquatic systems in Nearctic temperate regions. The Canadian Entomologist 140: 495–509.

    Google Scholar 

  • Robinson, B. W. & D. S. Wilson, 1998. Optimal foranging, specialization, and a solution to Liem’s paradox. The American Society of Naturalists 151: 223–235.

    CAS  Google Scholar 

  • Scheffer, M., R. Vergnon, E. H. V. Nes, J. G. M. Cuppen & E. T. H. M. Peeters, 2015. The evolution of functionally redundant species; evidence from beetles. PLoS ONE 10: e0137974.

    PubMed  PubMed Central  Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, New York.

    Google Scholar 

  • Schoener, T. W., 1983. Reviewed field experiments on interspecific competition. The American Society of Naturalists 122: 240–285.

    Google Scholar 

  • Segura, M. O., T. Siqueira & A. A. Fonseca-Gessne, 2013. Variation in body size of Phanocerus clavicornis Sharp, 1882 (Coleoptera: Elmidae: Larainae) in Atlantic Rainforest streams in response to hydraulic disturbance. Brazilian Journal of Biology 73: 747–752.

    CAS  Google Scholar 

  • Smith, F. A. & S. K. Lyons, 2011. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philosophical Transactions of the Royal Society B: Biological Sciences 366: 2364–2378.

    Google Scholar 

  • Vergnon, R., R. Leijs, E. H. V. Nes & M. Scheffer, 2013. Repeated parallel evolution reveals limiting similarity in subterranean diving beetles. The American Society of Naturalists 182: 67–75.

    Google Scholar 

  • Walther, D. A. & M. R. Whiles, 2011. Secondary production in a southern Illinois headwater stream: relationships between organic matter standing stocks and macroinvertebrate productivity. Journal of the North American Benthological Society 30: 357–373.

    Google Scholar 

  • Wilson, J. B. & W. J. Stubbs, 2012. Evidence for assembly rules: limiting similarity within a saltmarsh. Journal of Ecology 100: 210–221.

    Google Scholar 

Download references

Acknowledgements

To the CEBS team for assistance in the field and laboratory, especially to Gilson Argolo for helping to sort the samples. To Ana Clara Viana for the drawing that exemplifies the methodology. To the employees and managers of the State Park of Lapa Grande (Instituto Estadual de Florestas do Estado de Minas Gerais – IEF) for providing the accommodation, as well as for the attention. VMM is grateful to Vale for the grant awarded. RLF is grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant No. 308334/2018). We also thank the three anonymous referees that provided valuable advice, which significantly increased the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Mendes Martins.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, V.M., Ferreira, R.L. Limiting similarity in subterranean ecosystems: a case of niche differentiation in Elmidae (Coleoptera) from epigean and hypogean environments. Hydrobiologia 847, 593–604 (2020). https://doi.org/10.1007/s10750-019-04123-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04123-x

Keywords

Navigation