Skip to main content
Log in

Research on dams and fishes: determinants, directions, and gaps in the world scientific production

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Despite the socio-environmental importance of ichthyofauna, global fish biodiversity has decreased, and the damming of rivers is one anthropogenic activity that causes this reduction. This scientometric study evaluates the main determinants, directions, and gaps of scientific research on the biodiversity of fishes that are influenced by dams. Between 1991 and 2016, there was an increase in the number of studies about this topic, in proportion to the total number of studies that were evaluated. The distribution of these studies among countries is not random, since some socioeconomic and environmental factors (e.g., gross domestic product, number of researchers, number of large dams) determine the distribution of research. Moreover, these studies mostly address the negative impacts of dams on fish communities on a local scale; several studies have shown the importance of mitigating these impacts. In this particular study, we emphasize the need to research the effects of fishing, cascading dams and the phylogenetic diversity of ichthyofauna. We find that the relationship between dams and fish has become popular among researchers, in particular those who are willing to understand the causes, consequences, and severity of these changes on the ichthyofauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A., H. F. Júlio Jr. & J. R. Orghetti, 1992. Considerações sobre os impactos dos represamentos na ictiofauna e medidas para sua atenuação. Um estudo de caso: reservatório de Itaipu. Revista Unimar 14(suppl): 173.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. UEM, Maringá: 501.

    Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.

    CAS  Google Scholar 

  • Agostinho, A. A., L. C. Gomes, N. C. Santos, J. C. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Google Scholar 

  • Alcamo, J., P. Döll, T. Henrichs, F. Kaspar, B. Lehner, T. Rösch & S. Siebert, 2003. Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrological Sciences Journal 48: 339–348.

    Google Scholar 

  • Alexandre, C. M. & P. R. Almeida, 2010. The impact of small physical obstacles on the structure of freshwater fish assemblages. River Research and Applications 26: 977–994.

    Google Scholar 

  • Alves, D. C. & C. V. Minte-Vera, 2013. Scientometric analysis of freshwater fisheries in Brazil: repeating past errors? Reviews in Fish Biology and Fisheries 23(1): 113–126.

    Google Scholar 

  • AQUASTAT- FAO’s Global Water Information System, 2017. [available on internet at http://www.fao.org/nr/water/aquastat/dams/index.stm. Accessed Apr 2017].

  • Azevedo-Santos, V. M., et al., 2017. Removing the abyss between conservation science and policy decisions in Brazil. Biodiversity and Conservation 26: 1745–1752.

    Google Scholar 

  • Barbosa, F. A. R., J. Padisák, E. L. G. Espindola, G. Borics & O. Rocha, 1999. The cascading Reservoir Continuum Concept (CRCC) and its application to the River Tiete ˆ basin, São Paulo State, Brazil. In Tundisi, J. G. & M. Straskaba (eds), Theoretical Reservoir Ecology and Its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, São Carlos.

    Google Scholar 

  • Baxter, R. M., 1977. Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics 8: 255–283.

    Google Scholar 

  • Becker, R. A., J. M. Chambers & A. R. Wilks, 1988. The New S Language. Wadsworth & Brooks, Pacific Grove.

    Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2018. Numerical Ecology with R. Springer, New York.

    Google Scholar 

  • Borges, P. P., K. A. F. de Andrade Oliveira, K. B. Machado, Ú. L. Vaz, H. F. da Cunha & J. C. Nabout, 2014. Trends and gaps of the scientific literature on the Cerrado biome: a scientometric analysis. Neotropical Biology and Conservation 10: 2–8.

    Google Scholar 

  • Burchsted, D. & M. D. Daniels, 2014. Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut, USA. Geomorphology 205: 36–50.

    Google Scholar 

  • Chambers, J. M., 1992. Linear models. In Chambers, J. M. & T. J. Hastie (eds), Statistical Models. Wadsworth & Brooks/Cole, Pacific Grove.

    Google Scholar 

  • Chen, Y., K. Börner & S. Fang, 2013. Evolving collaboration networks in Scientometrics in 1978–2010: a micro–macro analysis. Scientometrics 95: 1051–1070.

    Google Scholar 

  • Cianciaruso, M. V., I. A. Silva & M. A. Batalha, 2009. Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotropica 9: 93–103.

    Google Scholar 

  • Cooper, A. R., D. M. Infante, K. E. Wehrly, L. Wang & T. O. Brenden, 2016. Identifying indicators and quantifying large-scale effects of dams on fishes. Ecological Indicators 61: 646–657.

    Google Scholar 

  • Costanza, R., et al., 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    CAS  Google Scholar 

  • Costanza, R., et al., 2017. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosystem Services 28: 1–16.

    Google Scholar 

  • Couto, T. B. & J. D. Olden, 2018. Global proliferation of small hydropower plants–science and policy. Frontiers in Ecology and the Environment 16: 91–100.

    Google Scholar 

  • Daniel, W. W., 1999. Biostatistics: A Foundation for Analysis in the Health Sciences, 7th ed. Wiley, New York.

    Google Scholar 

  • Derksen, S. & H. J. Keselman, 1992. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology 45: 265–282.

    Google Scholar 

  • Dos Santos, N. C. L., et al., 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia 802(1): 245–253.

    Google Scholar 

  • Dudgeon, D., et al., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Dugan, P. J., et al., 2010. Fish migration, dams, and loss of ecosystem services in the Mekong basin. AMBIO 39: 344–348.

    PubMed  PubMed Central  Google Scholar 

  • FAO- United Nations Organization for Agriculture and Food, 2017. [available on internet http://www.fao.org/faostat/en/#home. Accessed Apr 2017].

  • Fearnside, P. M., 2016. Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: implications for the aluminum industry. World Development 77: 48–65.

    Google Scholar 

  • Fernandes, G. W., et al., 2017. Dismantling Brazil’s science threatens global biodiversity heritage. Perspectives in Ecology and Conservation 15: 239–243.

    Google Scholar 

  • Ferris, G. R., P. L. Perrewé, S. R. Daniels, D. Lawong & J. J. Holmes, 2017. Social influence and politics in organizational research: what we know and what we need to know. Journal of Leadership & Organizational Studies 24: 5–19.

    Google Scholar 

  • Fonseca, F. S. D., R. D. Domingues, E. M. Hallerman & A. W. Hilsdorf, 2017. Genetic diversity of an imperiled Neotropical catfish and recommendations for its restoration. Frontiers in Genetics 8: 196.

    PubMed  PubMed Central  Google Scholar 

  • Freedman, J. A., B. D. Lorson, R. B. Taylor, R. F. Carline & J. R. Stauffer Jr., 2014. River of the dammed: longitudinal changes in fish assemblages in response to dams. Hydrobiologia 727: 19–33.

    CAS  Google Scholar 

  • Fung, Z., T. Pomun, K. J. Charles & J. Kirchherr, 2018. Mapping the social impacts of small dams: the case of Thailand’s Ing River basin. Ambio 48(2): 180–191.

    PubMed  PubMed Central  Google Scholar 

  • Garfield, E., 2009. From the science of science to Scientometrics visualizing the history of science with HistCite software. Journal of Informetrics 3: 173–179.

    Google Scholar 

  • Gerstner, K., et al., 2017. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods in Ecology and Evolution 8: 777–784.

    Google Scholar 

  • Gordon, T. A. C., et al., 2018. Fishes in a changing world: learning from the past to promote sustainability of fish populations. Journal of Fish Biology 92: 804–827.

    CAS  PubMed  Google Scholar 

  • Haizenreder, E. M., F. D. T. A. Milhomem & E. E. Marques, 2017. “É a morte do rio Tocantins, eu sinto isso”: Desterritorialização e perdas simbólicas em comunidades tradicionais atingidas pela hidrelétrica de estreito. TO. Sociedade & Natureza 29(1): 53–62.

    Google Scholar 

  • Hallwass, G., P. F. Lopes, A. A. Juras & R. A. Silvano, 2013. Fishers’ knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers. Ecological Applications 23: 392–407.

    PubMed  Google Scholar 

  • Helfman, G., B. B. Collette, D. E. Facey & B. W. Bowen, 2009. The Diversity of Fishes: Biology, Evolution, and Ecology. Wiley, Hoboken: 736.

    Google Scholar 

  • Henriques, S., et al., 2017. Biogeographical region and environmental conditions drive functional traits of estuarine fish assemblages worldwide. Fish and Fisheries 18: 752–771.

    Google Scholar 

  • Hoeinghaus, D. J., et al., 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 1222–1231.

    PubMed  Google Scholar 

  • Holmgren, M. & S. A. Schnitzer, 2004. Science on the rise in developing countries. PLoS Biology 2: e1.

    PubMed  PubMed Central  Google Scholar 

  • Holmlund, C. M. & M. Hammer, 1999. Ecosystem services generated by fish populations. Ecological Economics 29: 253–268.

    Google Scholar 

  • Huang, D. W., 2015. Temporal evolution of multi-author papers in basic sciences from 1960 to 2010. Scientometrics 105: 2137–2147.

    Google Scholar 

  • ICOLD- International Commission on Large Dams, 2017. [available on internet http://www.icold-cigb.net/article/GB/world_register/general_synthesis/number-of-dams-by-country-members. Accessed Apr 2017].

  • Islam, D. & F. Berkes, 2016. Indigenous peoples’ fisheries and food security: a case from northern Canada. Food Security 8: 815–826.

    Google Scholar 

  • IUCN- The International Union for Conservation of Nature and Natural Resources, 2017. Red List of Threatened Species. [available on internet http://www.iucnredlist.org/search/link/5901429e-0c3be3d0. Accessed Apr 2017].

  • Kemp, P. S., 2016. Meta-analyses, metrics and motivation: mixed messages in the fish passage debate. River Research and Applications 32: 2116–2124.

    Google Scholar 

  • Kirchherr, J., H. Pohlner & K. J. Charles, 2016. Cleaning up the big muddy: a meta-synthesis of the research on the social impact of dams. Environmental Impact Assessment Review 60: 115–125.

    Google Scholar 

  • Lees, A. C., C. A. Peres, P. M. Fearnside, M. Schneider & J. A. Zuanon, 2016. Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation 25: 451–466.

    Google Scholar 

  • Leitão, R. P., 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    PubMed  PubMed Central  Google Scholar 

  • Lévêque, C., T. Oberdorff, D. Paugy, M. L. J. Stiassny & P. A. Tedesco, 2008. Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595: 545–567.

    Google Scholar 

  • Li, K., J. Rollins & E. Yan, 2018. Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics 115: 1–20.

    PubMed  Google Scholar 

  • Lima-Junior, D. P., A. L. B. Magalhães & J. R. S. Vitule, 2015. Dams, politics and drought threat: the march of folly in Brazilian freshwaters ecosystems. Natureza & Conservação 13: 196–198.

    Google Scholar 

  • Lira, N. A., P. S. Pompeu, C. S. Agostinho, A. A. Agostinho, M. S. Arcifa & F. M. Pelicice, 2017. Fish passages in South America: an overview of studied facilities and research effort. Neotropical Ichthyology 15: 1–14.

    Google Scholar 

  • Luiza-Andrade, A., L. F. de Assis Montag & L. Juen, 2017. Functional diversity in studies of aquatic macroinvertebrates community. Scientometrics 111: 1643–1656.

    Google Scholar 

  • Marcionilio, S. M., et al., 2015. The state of global scientific literature on chlorophyll-A. Bioscience Journal 31: 941–950.

    Google Scholar 

  • McKay, S. K., A. R. Cooper, M. W. Diebel, D. Elkins, G. Oldford, C. Roghair & D. Wieferich, 2017. Informing watershed connectivity barrier prioritization decisions: a synthesis. River Research and Applications 33: 847–862.

    Google Scholar 

  • Nabout, J. C., L. M. Bini & J. A. Diniz-Filho, 2010. Global literature of fiddler crabs, genus Uca (Decapoda, Ocypodidae): trends and future directions. Iheringia. Série Zoologia 100: 463–468.

    Google Scholar 

  • Nabout, J. C., et al., 2015. Publish (in a group) or perish (alone): the trend from single-to multi-authorship in biological papers. Scientometrics 102: 357–364.

    Google Scholar 

  • Naing, L., T. Winn & B. N. Rusli, 2006. Practical issues in calculating the sample size for prevalence studies. Archives of Orofacial Sciences 1: 9–14.

    Google Scholar 

  • Nelson, J. S., T. C. Grande & M. V. Wilson, 2016. Fishes of the World. Wiley, Hoboken: 752.

    Google Scholar 

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    CAS  PubMed  Google Scholar 

  • Nogueira, C., et al., 2010. Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS ONE 5: e11390.

    PubMed  PubMed Central  Google Scholar 

  • Pan, R. K., K. Kaski & S. Fortunato, 2012. World citation and collaboration networks: uncovering the role of geography in science. Scientific Reports 2: 902.

    PubMed  PubMed Central  Google Scholar 

  • Parreira, M. R., K. B. Machado, R. Logares, J. A. F. Diniz-Filho & J. C. Nabout, 2017. The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics 113(3): 1539–1550.

    Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.

    Google Scholar 

  • Pelicice, F. M., et al., 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries 18(6): 1119–1133.

    Google Scholar 

  • QGIS Development Team, 2012. QGIS Geographic Information System. Open Source Geospatial Foundation Project.

  • R development core team, 2018. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. [available on internet <http://www.R-project.org].

  • Rosenberg, D. M., P. McCully & C. M. Pringle, 2000. Global-scale environmental effects of hydrological alterations: introduction. BioScience 50: 746–751.

    Google Scholar 

  • Sabo, J. L., et al., 2017. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358: 1–11.

    Google Scholar 

  • Sheer, M. B. & E. A. Steel, 2006. Lost watersheds: barriers, aquatic habitat connectivity, and salmon persistence in the Willamette and Lower Columbia River basins. Transactions of the American Fisheries Society 135: 1654–1669.

    Google Scholar 

  • Silva, A. T., et al., 2018. The future of fish passage science, engineering, and practice. Fish and Fisheries 19: 340–362.

    Google Scholar 

  • Stanford, J. A. & J. V. Ward, 2001. Revisiting the serial discontinuity concept. Regulated Rivers: Research & Management 17: 303–310.

    Google Scholar 

  • Stocks, G., L. Seales, F. Paniagua, E. Maehr & E. M. Bruna, 2008. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40(4): 397–404.

    Google Scholar 

  • Strehl, L. & C. A. Dos Santos, 2002. Indicadores de qualidade da atividade científica. Ciência Hoje 186: 34–39.

    Google Scholar 

  • Teresa, F. B. & L. Casatti, 2017. Trait-based metrics as bioindicators: responses of stream fish assemblages to a gradient of environmental degradation. Ecological Indicators 75: 249–258.

    Google Scholar 

  • The World Bank, 2017. [available on internet https://data.worldbank.org/. Acessed Apr 2017].

  • Tilt, B. & D. Gerkey, 2016. Dams and population displacement on China’s Upper Mekong River: implications for social capital and social–ecological resilience. Global Environmental Change 36: 153–162.

    Google Scholar 

  • Toussaint, A., N. Charpin, S. Brosse & S. Villéger, 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6: 22125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • UNDP—United Nations Development Programme, 2017. [available on internet http://hdr.undp.org/en/data#. Accessed Apr 2017].

  • UNESCO/UIS—United Nations Educational, Scientific and Cultural Organization/UNESCO Institute for Statistics, 2017. [available on internet http://uis.unesco.org/. Accessed Apr 2017].

  • Vitule, J. R., et al., 2016. We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodiversity and Conservation 26(3): 757–762.

    Google Scholar 

  • Waldron, A., et al., 2017. Reductions in global biodiversity loss predicted from conservation spending. Nature 551: 364.

    CAS  PubMed  Google Scholar 

  • WCD- World Commission on Dams, 2000. Dams and Development: A New Framework for Decision-making: the Report of the World Commission on Dams. Earthscan, London: 365p.

    Google Scholar 

  • Wilkes, M., et al., 2018. Not just a migration problem: metapopulations, habitat shifts and gene flow are also important for fishway science and management. River Research and Applications 34: 283–393.

    Google Scholar 

  • Winemiller, K. O., D. B. Fitzgerald, L. M. Bower & E. R. Pianka, 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters 18(8): 737–751.

    PubMed  PubMed Central  Google Scholar 

  • Winemiller, K. O., et al., 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    CAS  PubMed  Google Scholar 

  • Winter, M., V. Devictor & O. Schweiger, 2013. Phylogenetic diversity and nature conservation: where are we? Trends in Ecology & Evolution 28: 199–204.

    Google Scholar 

  • Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydecks & K. Tockner, 2015. A global boom in hydropower dam construction. Aquatic Sciences 77: 161–170.

    Google Scholar 

  • Zhang, Y., K. Chen, G. Zhu, R. C. Yam & J. Guan, 2016. Inter-organizational scientific collaborations and policy effects: an ego-network evolutionary perspective of the Chinese Academy of Sciences. Scientometrics 108: 1383–1415.

    Google Scholar 

  • Ziv, G., et al., 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences 109: 5609–5614.

    CAS  Google Scholar 

  • Zuur, A., E. N. Ieno & G. M. Smith, 2007. Analyzing Ecological Data. Springer, New York: 672.

    Google Scholar 

Download references

Acknowledgments

Thank you for all the suggestions made by the professors from the Programa de Pós -Graduação em Ciências Ambientais-PPGCA of Universidade de Brasília-UnB. This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- CAPES (Financing Code 001), a Brazilian public institution for the promotion of research. JCN, FBT, FMP and LCGV were supported by productivity fellowships of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasley Rodrigo Pereira.

Additional information

Handling editor: David J. Hoeinghaus

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, H.R., Gomes, L.F., Barbosa, H.d. et al. Research on dams and fishes: determinants, directions, and gaps in the world scientific production. Hydrobiologia 847, 579–592 (2020). https://doi.org/10.1007/s10750-019-04122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04122-y

Keywords

Navigation