Species delimitation based on integrative approach suggests reallocation of genus in Hypostomini catfish (Siluriformes, Loricariidae)

Abstract

Integrative approaches are particularly useful to resolve taxonomic uncertainties in species-rich groups that have undergone explosive radiation, such as Hypostomini (suckermouth armored catfishes). This tribe encompasses the genera Hypostomus and Pterygoplichthys, but the actual number of species in each genus and the intergeneric interrelationships are confusing or unknown for some ecoregions in the Neotropics. Here, we analyzed three endemic species Hypostomus chrysostiktos, H. jaguar and H. unae from Northeastern Mata Atlântica in northeastern Brazil based on meristic characters, geometric morphometrics, chromosomal data, DNA barcode and species delimitation algorithms. The current taxonomic status of these catfishes is challenged. While H. unae and H. jaguar revealed a close evolutionary relationship similar to those observed within Hypostomus from other basins, H. chrysostiktos was herein more closely related to Pterygoplichthys, being invariably recovered as a highly distinctive taxonomic unit than to Hypostomus. Therefore, we recommend the reallocation of H. chrysostiktos as Pterygoplichthys chrysostiktos and a thorough systematic review of Pterygoplichthys, particularly focusing on putative convergence traits in relation to Hypostomus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanake, D. Olson, H. L. Lopez, R. E. Reis, J. G. Lundberg, M. H. Sabaj Perez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414.

    Google Scholar 

  2. Alves, A. L., C. Oliveira, M. Nirchio, A. Granado & F. Foresti, 2006. Karyotypic relationships among the tribes of Hypostominae (Siluriformes: Loricariidae) with description of XO sex chromosome system in a Neotropical fish species. Genetica 128: 1–9.

    PubMed  Google Scholar 

  3. Armbruster, J. W., 1998a. Modifications of the digestive tract for holding air in loricariid and scoloplacid catfishes. Copeia 1998: 663–675.

    Google Scholar 

  4. Armbruster, J. W., 1998b. Modifications of the digestive tract for holding air in loricariid and scoloplacid catfishes. Copeia 3: 663–675.

    Google Scholar 

  5. Armbruster, J. W., 2004. Phylogenetic relationships of the suckermouth armored catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of the Linnean Society 141: 1–80.

    Google Scholar 

  6. Armbruster, J. W. & L. Page, 1996. Redescription of Aphanotorulus (Teleostei: Loricariidae) with description of one new species, A. ammophilus, from the Rio Orinoco Basin. Copeia 2: 379–389.

    Google Scholar 

  7. Armbruster, J. W. & L. M. Page, 2006. Redescription of Pterygoplichthys punctatus and description of a new species of Pterygoplichthys (Siluriformes: Loricariidae). Neotropical Ichthyology 4: 401–409.

    Google Scholar 

  8. Armbruster, J. W., D. C. Werneke & M. Tan, 2015. Three new species of saddled loricariid catfishes and a review of Hemiancistrus, Peckoltia and allied genera (Siluriformes). ZooKeys 480: 97–123.

    Google Scholar 

  9. Artoni, R. F. & L. A. C. Bertollo, 2001. Trends in the karyotype evolution of Loricariidae fish (Siluriformes). Hereditas 134: 201–210.

    CAS  PubMed  Google Scholar 

  10. Birindelli, J. L. O., A. M. Zanata & F. C. T. Lima, 2007. Hypostomus chrysostiktos, a new species of armored catfish (Siluriformes: Loricariidae) from Rio Paraguaçu, Bahia State, Brazil. Neotropical Ichthyology 5: 271–278.

    Google Scholar 

  11. Bitencourt, J. A., P. R. A. M. Affonso, L. Giuliano-Caetano & A. L. Dias, 2011a. Identification of distinct evolutionary units in allopatric populations of Hypostomus cf. wuchereri Günther, 1864 (Siluriformes: Loricariidae): karyotypic evidence. Neotropical Ichthyology 9: 317–324.

    Google Scholar 

  12. Bitencourt, J. A., P. R. A. M. Affonso, L. Giuliano-Caetano & A. L. Dias, 2011b. Heterochromatin heterogeneity in Hypostomus prope unae (Steindachner, 1878) (Siluriformes, Loricariidae) from Northeastern Brazil. Comparative Cytogenetics 5: 329–344.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bitencourt, J. A., P. R. A. M. Affonso, L. Giuliano-Caetano, P. L. S. Carneiro & A. L. Dias, 2012. Population divergence and peculiar karyoevolutionary trends in the loricariid fish Hypostomus aff. unae from northeastern Brazil. Genetics and Molecular Research 11: 933–943.

    CAS  PubMed  Google Scholar 

  14. Bittner, L., S. Halary, C. Payri, C. Cruaud, B. Reviers, P. Lopez & E. Bapteste, 2010. Some considerations for analyzing biodiversity using integrative metagenomics and gene networks. Biology Direct 5: 47.

    PubMed  PubMed Central  Google Scholar 

  15. Bockmann, F. A. & A. C. Ribeiro, 2003. Description of a new suckermouth armored catfish of the genus Pareiorhina (Siluriformes: Loricariidae) from southeastern Brazil. Ichthyological Exploration of Freshwaters 3: 231–242.

    Google Scholar 

  16. Boeseman, M., 1968. The genus Hypostomus Lacépède, 1803, and its Surinam representatives (Siluriformes, Loricariidae). Zoologische Verhandelingen 99: 1–89.

    Google Scholar 

  17. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge: 435p.

    Google Scholar 

  18. Brown, S. D. J., R. A. Collins, S. Boyer, C. Lefort, J. Malumbres-Olarte, C. J. Vink & R. H. Cruickshank, 2012. SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12: 562–565.

    PubMed  Google Scholar 

  19. Bueno, V. S., C. H. Zawadzki & V. P. Margarido, 2012. Trends in chromosome evolution in the genus Hypostomus Lacépède, 1803 (Osteichthyes, Loricariidae): a new perspective about the correlation between diploid number and chromosomes types. Reviews in Fish Biology and Fisheries 22: 241–250.

    Google Scholar 

  20. Bueno, V. S., J. T. Konerat, C. H. Zawadzki, P. C. Venere, D. R. Blanco & V. P. Margarido, 2018. Divergent chromosome evolution in Hypostominae tribes (Siluriformes: Loricariidae): correlation of chromosomal data with morphological and molecular phylogenies. Zebrafish 5: 492–503.

    Google Scholar 

  21. Camelier, P. & A. M. Zanata, 2014. Biogeography of freshwater fishes from the Northeastern Mata Atlântica freshwater ecoregion: distribution, endemism, and area relationships. Neotropical Ichthyology 12: 683–698.

    Google Scholar 

  22. Carstens, B. C., T. A. Pelletier, N. M. Reid & J. D. Satler, 2013. How to fail at species delimitation. Molecular Ecology 22: 4369–4383.

    PubMed  Google Scholar 

  23. Carvalho, D. C., D. A. A. Oliveira, P. S. Pompeu, C. G. Leal, C. Oliveira & R. Hanner, 2011. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River Basin. Mitochondrial DNA 22: 80–86.

    PubMed  Google Scholar 

  24. Carvalho, P. H., S. M. Q. Lima, C. H. Zawadzki, C. Oliveira & M. De Pinna, 2015. Phylogeographic patterns in suckermouth catfish Hypostomus ancistroides (Loricariidae): dispersion, vicariance and species complexity across a Neotropical biogeographic region. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis 27: 3590–3596.

    Google Scholar 

  25. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Diniz, D. & P. M. Xavier, 2006. EasyIdio v. 3.0 [available on internet at http://geocities.yahoo.com.br/easyidio]. Accessed May 2016.

  27. Eschmeyer, W. N., J. D. Fong & R. Van-Der-Laan. Catalog of Fishes [available on internet at http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp]. Accessed 20 March 2019.

  28. Ezard, T., T. Fujisawa & T. G. Barraclough, 2009. Splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-18/r45 [available on internet at http://R-Forge.R-project.org/projects/splits/]. Accessed March 2019.

  29. Fernandes, C. A., D. S. Alves, A. R. Guterres & I. C. Martins-Santos, 2015. Cytogenetic analysis of two Loricariidae species (Teleostei, Siluriformes) from Iguatemi River (Parana River Drainage) in Brazil. Comparative Cytogenetics 9: 67–78.

    PubMed  PubMed Central  Google Scholar 

  30. Ferraris Jr., C. J., 2007. Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa 1: 1–628.

    Google Scholar 

  31. Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724.

    PubMed  PubMed Central  Google Scholar 

  32. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  33. Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica 4: 9.

    Google Scholar 

  34. Heracle BioSoft, 2013. Sequenciador de DNA Assembler v4 [available on internet at http://www.DnaBaser.com]. Accessed March 2017.

  35. Higuchi, H., H. A. Britski & J. C. Garavello, 1990. Kalyptodoras bahiensis, a new genus and species of thorny catfish from northeastern Brazil (Siluriformes: Doradidae). Ichthyological Exploration Freshwaters 3: 219–225.

    Google Scholar 

  36. Hollanda-Carvalho, P. & C. Weber, 2004. Five new species of the Hypostomus cochliodon group (Siluriformes: Loricariidae) from the Middle and Lower Amazon System. Revue suisse de Zoologie 4: 953–978.

    Google Scholar 

  37. Howell, W. M. & D. A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.

    CAS  PubMed  Google Scholar 

  38. Ivanova, N. V., T. S. Zemlak, R. H. Hanner & P. D. N. Hebert, 2006. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7: 544–548.

    Google Scholar 

  39. Jones, M., A. Ghoorah & M. Blaxter, 2011. jMOTU and Taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE 6: e19259.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kapli, T., S. Lutteropp, J. Zhang, K. Kobert, P. Pavlidis, A. Stamatakis & T. Flouri, 2016. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33: 1630–1638.

    Google Scholar 

  41. Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.

    PubMed  Google Scholar 

  42. Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Langerhans, R. B., 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48: 750–768.

    PubMed  Google Scholar 

  44. Leigh, J. W. & D. Bryant, 2015. PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.

    Google Scholar 

  45. Levan, A., K. Fredga & A. A. Sanderberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.

    Google Scholar 

  46. Lomolino, M. V., 2004. Conservation biogeography. In Lomolino, M. V. & L. R. Heaney (eds), Frontiers of Biogeography. Sunderland, Sinauer: 293–296.

    Google Scholar 

  47. Lujan, N. K. & K. W. Conway, 2015. Life in the fast lane: a review of rheophily in freshwater fishes. In Riesch, R., M. Tobler & M. Plath (eds), Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments. Springer, London: 107–136.

    Google Scholar 

  48. Lujan, N. K., D. P. German & K. O. Winemiller, 2011. Do wood grazing fishes partition their niche? Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology 25: 1327–1338.

    Google Scholar 

  49. Lujan, N. K., J. W. Armbruster, N. R. Lovejoy & H. Lopez-Fernandez, 2015. Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Molecular Phylogenetics and Evolution 82: 269–288.

    PubMed  Google Scholar 

  50. Miller, M., W. Pfeiffer & T. Schwartz, 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), New Orleans, LA: 1–8.

  51. Molina, W. F., D. E. O. Alves, W. C. Araújo, P. A. Martinez, M. F. M. Silva & G. W. W. F. Costa, 2010. Performance of human immune stimulating agents in the improvement of fish cytogenetic preparations. Genetics and Molecular Research 9: 1807–1814.

    CAS  PubMed  Google Scholar 

  52. Netto, M. R. C. B., E. Pauls & P. R. A. M. Affonso, 2007. A standard protocol for obtaining fish chromosomes under post-mortem conditions. Micron 38: 214–217.

    Google Scholar 

  53. Oliveira, R. R., I. L. Souza & P. C. Venere, 2006. Karyotype description of three species of Loricariidae (Siluriformes) and occurrence of the ZZ/ZW sexual system in Hemiancistrus spilomma Cardoso & Lucinda. Neotropical Ichthyology 4: 93–97.

    Google Scholar 

  54. Orfinger, A. B. & D. D. Goodding, 2018. The global invasion of the suckermouth armored catfish genus Pterygoplichthys (Siluriformes: Loricariidae): annotated list of species, distributional summary, and assessment of impacts. Zoological Studies 57: 7.

    Google Scholar 

  55. Padial, J. M., A. Miralles, I. De La Riva & M. Vences, 2010. The integrative future of taxonomy. Frontiers in Zoology 7: 7–16.

    Google Scholar 

  56. Pereira, L. H. G., R. Hanner, F. Foresti & C. Oliveira, 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genomics 14: 20.

    CAS  Google Scholar 

  57. Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin & A. P. Vogler, 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.

    PubMed  Google Scholar 

  58. Pugedo, M. L., F. R. A. Neto, T. C. Pessali, J. L. O. Birindelli & D. C. Carvalho, 2016. Integrative taxonomy supports new candidate fish species in a poorly studied Neotropical region: the Jequitinhonha River Basin. Genetica 3: 341–349.

    Google Scholar 

  59. Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 8: 1864–1877.

    Google Scholar 

  60. Ramirez, J. L., J. L. Birindelli, D. C. Carvalho, P. R. A. M. Affonso, P. C. Venere, H. Ortega, M. Carrillo-Avila, J. A. Rodríguez-Pulido & P. M. Galetti Jr., 2017. Revealing hidden diversity of the underestimated Neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Frontiers in Genetics 8: 149.

    PubMed  PubMed Central  Google Scholar 

  61. Ratnasingham, S. & P. D. N. Hebert, 2013. A DNA-based registry for all animal species: the Barcode Index Number (BIN) System. PLoS ONE 8: e66213.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ray, C. K. & J. W. Armbruster, 2016. The genera Isorineloricaria and Aphanotorulus (Siluriformes: Loricariidae) with description of a new species. Zootaxa 4072: 501–539.

    PubMed  Google Scholar 

  63. Ribeiro, A. C., 2006. Tectonic history and the biogeography of the freshwater fishes from the costal drainages of eastern Brazil: an example of fauna evolution associated with a divergent continental margin. Neotropical Ichthyology 4: 225–246.

    Google Scholar 

  64. Rohlf, F. J., 2017a. TPSDig2, Version 2.30. Department of Ecology and Evolution, State University of New York, Stony Brook.

    Google Scholar 

  65. Rohlf, F. J., 2017b. TPSUtil, Version 1.74. Department of Ecology and Evolution, State University of New York, Stony Brook.

    Google Scholar 

  66. Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    CAS  PubMed  Google Scholar 

  67. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, I. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    PubMed  PubMed Central  Google Scholar 

  68. Rosa, R. S., N. A. Menezes, H. A. Britski, W. J. E. M. Costa & F. Groth, 2004. Diversidade, padrões de distribuição e conservação dos peixes da Caatinga. pp. 135–180. In Leal, I. R., M. Tabarelli & J. M. C. da Silva (eds), Ecologia e conservação da Caatinga. Recife, Edufpe: 805p.

    Google Scholar 

  69. Roxo, F. F., N. K. Lujan, V. A. Tagliacollo, B. T. Waltz, G. S. C. Silva, C. Oliveira & J. S. Albert, 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 6: e0178240.

    Google Scholar 

  70. Roxo, F. F., L. E. Ochoa, M. H. Sabaj, N. K. Lujan, R. Covain, G. S. C. Silva, B. F. Melo, J. S. Albert, J. Chang, F. Foresti, M. E. Alfaro & C. Oliveira, 2019. Phylogenomic reappraisal of the Neotropical catfish family Loricariidae (Teleostei: Siluriformes) using ultraconserved elements. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2019.02.017.

    Article  PubMed  Google Scholar 

  71. Rubert, M., R. Da Rosa, C. H. Zawadzki, S. Mariotto, O. Moreira-Filho & L. Giuliano-Caetano, 2016. Chromosome mapping of 18S ribosomal RNA genes in eleven Hypostomus species (Siluriformes, Loricariidae): diversity analysis of the sites. Zebrafish 13: 360–368.

    CAS  PubMed  Google Scholar 

  72. Sardeiro, B., 2012. Uma nova espécie de Hypostomus Lacépède (Siluriformes: Loricariidae) da bacia do rio Paraguaçu e redescrição de Hypostomus unae (Steindachner, 1878), Estado da Bahia, Brasil. Unpublished Thesis, Universidade Federal da Bahia, Bahia.

  73. Sarkar, I. N., P. J. Planet & R. Desalle, 2008. Caos software for use in character-based DNA barcoding. Molecular Ecology Resources 8: 1256–1259.

    CAS  PubMed  Google Scholar 

  74. Sarmento-Soares, L. M., H. A. Britski, M. S. Anjos, A. M. Zanata, R. F. Martins-Pinheiro & M. G. Barretto, 2016. First record of genus Imparfinis from a northeastern coastal Brazilian River Basin: I. borodini Mees & Cala, 1989 in Rio de Contas, Bahia. Check List 12: 1832–1848.

    Google Scholar 

  75. Silva, G. S., F. F. Roxo, N. K. Lujan, V. A. Tagliacollo, C. H. Zawadzki & C. Oliveira, 2016. Transcontinental dispersal, ecological opportunity and origins of an adaptive radiation in the Neotropical catfish genus Hypostomus (Siluriformes: Loricariidae). Molecular Ecology 25: 1511–1529.

    PubMed  Google Scholar 

  76. Slice, D., 2007. Geometric morphometrics. Annual Review of Anthropology 36: 261–281.

    Google Scholar 

  77. Souza, C. R., P. R. A. M. Affonso, J. A. Bitencourt, I. Sampaio & P. L. S. Carneiro, 2018. Species validation and cryptic diversity in the Geophagus brasiliensis Quoy & Gaimard, 1824 complex (Teleostei, Cichlidae) from Brazilian Coastal Basins as revealed by DNA analyses. Hydrobiologia 809: 309–321.

    CAS  Google Scholar 

  78. Stamatakis, A., 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Suchard, M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond & A. Rambaut, 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016.

    PubMed  PubMed Central  Google Scholar 

  80. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. N. Hebert, 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360: 1847–1857.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Whittaker, R. J., M. B. Araújo, P. Jepson, R. J. Ladle, J. E. M. Watson & K. J. Willis, 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions 11: 3–24.

    Google Scholar 

  83. Zanata, A. M. & B. R. Pitanga, 2016. A new species of Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae) from Rio Itapicuru Basin, Bahia State, Brazil. Zootaxa 2: 223–232.

    Google Scholar 

  84. Zanata, A. M., B. Sardeiro & C. H. Zawadzki, 2013. A new dark-dotted species of Hypostomus Lacépède (Siluriformes: Loricariidae) from rio Paraguaçu, Bahia State, Brazil. Neotropical Ichthyology 11: 247–256.

    Google Scholar 

  85. Zawadzki, C. H., E. Renesto & R. P. Mateus, 2008. Allozyme analysis of Hypostomus (Teleostei: Loricariidae) from the Rio Corumbá, Upper Rio Paraná Basin, Brazil. Biochemical Genetics 46: 755–769.

    CAS  PubMed  Google Scholar 

  86. Zawadzki, C. H., P. H. Carvalho, J. L. O. Birindelli & F. M. Azevedo, 2016. Hypostomus nigrolineatus, a new dark-striped species from the rio Jequitinhonha and Rio Pardo Basins, Brazil (Siluriformes, Loricariidae). Ichthyological Exploration of Freshwaters 27: 263–274.

    Google Scholar 

  87. Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial support to this work was provided by Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) (Grant RED0009/2013). The license to collect the specimens (Number 26752-3) was obtained from the Instituto Chico Mendes de Conservação da Biodiversidade/Sistema de Autorização e Informação da Biodiversidade (ICMBio/SISBIO). The euthanasia and experiments were approved by the Ethic Committee of Utilization of Animals from Universidade Estadual do Sudoeste da Bahia (CEUA/UESB, Number 32/2013). The authors would also like to thank the field assistants, particularly the fishermen from Iaçu-BA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo R. A. M. Affonso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Christian Sturmbauer

Electronic supplementary material

Below is the link to the electronic supplementary material.

_1:

Supplementary material 1 (PDF 158 kb) Supplementary Morphometric and meristic data for Hypostomus chrysostiktos, H. jaguar, and H. unae. SD standard deviation

_2:

Supplementary material 2 (PDF 200 kb) Supplementary Anatomic landmarks inserted in each view for the morphometric analyses of Hypostomus spp. and photographs of Hypostomus from coastal basins along Northeastern Mata Atlântica (NMA) ecoregion, indicating the anatomic landmarks used in morphometric analyses. a Dorsal view, b left side view, and c ventral view

_3:

Supplementary material 3 (PDF 188 kb) Supplementary Information of COI sequences used in the present study, including access numbers, species description and references

_4:

Supplementary material 4 (PDF 221 kb) Supplementary Photographs and morphological comparison between Hypostomus chrysostiktos, H. jaguar, H. unae and Pterygoplichthys etentaculatus

_5:

Supplementary material 5 (PDF 325 kb) Supplementary Maximum likelihood tree, showing bootstrap values above 60%

_6:

Supplementary material 6 (PDF 161 kb) Supplementary Intraspecific genetic distance (D) of COI sequences based on K2P distance of analyzed species and number and position of diagnostic molecular sites in each species

_7:

Supplementary material 7 (PDF 180 kb) Supplementary Interspecific genetic distance (D) of COI sequences based on K2P distance of analyzed species, without outgroups. This matrix was used to generate the heatmap

_8:

Supplementary material 8 (PDF 121 kb) Supplementary Cytogenetic data in morphotypes and species of Hypostomus from coastal basins in NMA and putatively related taxa, including Pterygoplichthys

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anjos, M.S., Bitencourt, J.A., Nunes, L.A. et al. Species delimitation based on integrative approach suggests reallocation of genus in Hypostomini catfish (Siluriformes, Loricariidae). Hydrobiologia 847, 563–578 (2020). https://doi.org/10.1007/s10750-019-04121-z

Download citation

Keywords

  • Cytogenetics
  • DNA barcode
  • Geometric morphometrics
  • Hypostomus
  • Pterygoplichthys