Advertisement

Species delimitation based on integrative approach suggests reallocation of genus in Hypostomini catfish (Siluriformes, Loricariidae)

  • Marcia S. Anjos
  • Jamille A. Bitencourt
  • Lorena A. Nunes
  • Luisa M. Sarmento-Soares
  • Daniel C. Carvalho
  • Jonathan W. Armbruster
  • Paulo R. A. M. AffonsoEmail author
Primary Research Paper

Abstract

Integrative approaches are particularly useful to resolve taxonomic uncertainties in species-rich groups that have undergone explosive radiation, such as Hypostomini (suckermouth armored catfishes). This tribe encompasses the genera Hypostomus and Pterygoplichthys, but the actual number of species in each genus and the intergeneric interrelationships are confusing or unknown for some ecoregions in the Neotropics. Here, we analyzed three endemic species Hypostomus chrysostiktos, H. jaguar and H. unae from Northeastern Mata Atlântica in northeastern Brazil based on meristic characters, geometric morphometrics, chromosomal data, DNA barcode and species delimitation algorithms. The current taxonomic status of these catfishes is challenged. While H. unae and H. jaguar revealed a close evolutionary relationship similar to those observed within Hypostomus from other basins, H. chrysostiktos was herein more closely related to Pterygoplichthys, being invariably recovered as a highly distinctive taxonomic unit than to Hypostomus. Therefore, we recommend the reallocation of H. chrysostiktos as Pterygoplichthys chrysostiktos and a thorough systematic review of Pterygoplichthys, particularly focusing on putative convergence traits in relation to Hypostomus.

Keywords

Cytogenetics DNA barcode Geometric morphometrics Hypostomus Pterygoplichthys 

Notes

Acknowledgements

The financial support to this work was provided by Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) (Grant RED0009/2013). The license to collect the specimens (Number 26752-3) was obtained from the Instituto Chico Mendes de Conservação da Biodiversidade/Sistema de Autorização e Informação da Biodiversidade (ICMBio/SISBIO). The euthanasia and experiments were approved by the Ethic Committee of Utilization of Animals from Universidade Estadual do Sudoeste da Bahia (CEUA/UESB, Number 32/2013). The authors would also like to thank the field assistants, particularly the fishermen from Iaçu-BA.

Supplementary material

10750_2019_4121_MOESM1_ESM.pdf (159 kb)
Supplementary material 1 (PDF 158 kb) Supplementary_1: Morphometric and meristic data for Hypostomus chrysostiktos, H. jaguar, and H. unae. SD standard deviation
10750_2019_4121_MOESM2_ESM.pdf (200 kb)
Supplementary material 2 (PDF 200 kb) Supplementary_2: Anatomic landmarks inserted in each view for the morphometric analyses of Hypostomus spp. and photographs of Hypostomus from coastal basins along Northeastern Mata Atlântica (NMA) ecoregion, indicating the anatomic landmarks used in morphometric analyses. a Dorsal view, b left side view, and c ventral view
10750_2019_4121_MOESM3_ESM.pdf (189 kb)
Supplementary material 3 (PDF 188 kb) Supplementary_3: Information of COI sequences used in the present study, including access numbers, species description and references
10750_2019_4121_MOESM4_ESM.pdf (222 kb)
Supplementary material 4 (PDF 221 kb) Supplementary_4: Photographs and morphological comparison between Hypostomus chrysostiktos, H. jaguar, H. unae and Pterygoplichthys etentaculatus
10750_2019_4121_MOESM5_ESM.pdf (325 kb)
Supplementary material 5 (PDF 325 kb) Supplementary_5: Maximum likelihood tree, showing bootstrap values above 60%
10750_2019_4121_MOESM6_ESM.pdf (162 kb)
Supplementary material 6 (PDF 161 kb) Supplementary_6: Intraspecific genetic distance (D) of COI sequences based on K2P distance of analyzed species and number and position of diagnostic molecular sites in each species
10750_2019_4121_MOESM7_ESM.pdf (180 kb)
Supplementary material 7 (PDF 180 kb) Supplementary_7: Interspecific genetic distance (D) of COI sequences based on K2P distance of analyzed species, without outgroups. This matrix was used to generate the heatmap
10750_2019_4121_MOESM8_ESM.pdf (121 kb)
Supplementary material 8 (PDF 121 kb) Supplementary_8: Cytogenetic data in morphotypes and species of Hypostomus from coastal basins in NMA and putatively related taxa, including Pterygoplichthys

References

  1. Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanake, D. Olson, H. L. Lopez, R. E. Reis, J. G. Lundberg, M. H. Sabaj Perez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414.CrossRefGoogle Scholar
  2. Alves, A. L., C. Oliveira, M. Nirchio, A. Granado & F. Foresti, 2006. Karyotypic relationships among the tribes of Hypostominae (Siluriformes: Loricariidae) with description of XO sex chromosome system in a Neotropical fish species. Genetica 128: 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Armbruster, J. W., 1998a. Modifications of the digestive tract for holding air in loricariid and scoloplacid catfishes. Copeia 1998: 663–675.CrossRefGoogle Scholar
  4. Armbruster, J. W., 1998b. Modifications of the digestive tract for holding air in loricariid and scoloplacid catfishes. Copeia 3: 663–675.CrossRefGoogle Scholar
  5. Armbruster, J. W., 2004. Phylogenetic relationships of the suckermouth armored catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of the Linnean Society 141: 1–80.CrossRefGoogle Scholar
  6. Armbruster, J. W. & L. Page, 1996. Redescription of Aphanotorulus (Teleostei: Loricariidae) with description of one new species, A. ammophilus, from the Rio Orinoco Basin. Copeia 2: 379–389.CrossRefGoogle Scholar
  7. Armbruster, J. W. & L. M. Page, 2006. Redescription of Pterygoplichthys punctatus and description of a new species of Pterygoplichthys (Siluriformes: Loricariidae). Neotropical Ichthyology 4: 401–409.CrossRefGoogle Scholar
  8. Armbruster, J. W., D. C. Werneke & M. Tan, 2015. Three new species of saddled loricariid catfishes and a review of Hemiancistrus, Peckoltia and allied genera (Siluriformes). ZooKeys 480: 97–123.CrossRefGoogle Scholar
  9. Artoni, R. F. & L. A. C. Bertollo, 2001. Trends in the karyotype evolution of Loricariidae fish (Siluriformes). Hereditas 134: 201–210.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Birindelli, J. L. O., A. M. Zanata & F. C. T. Lima, 2007. Hypostomus chrysostiktos, a new species of armored catfish (Siluriformes: Loricariidae) from Rio Paraguaçu, Bahia State, Brazil. Neotropical Ichthyology 5: 271–278.CrossRefGoogle Scholar
  11. Bitencourt, J. A., P. R. A. M. Affonso, L. Giuliano-Caetano & A. L. Dias, 2011a. Identification of distinct evolutionary units in allopatric populations of Hypostomus cf. wuchereri Günther, 1864 (Siluriformes: Loricariidae): karyotypic evidence. Neotropical Ichthyology 9: 317–324.CrossRefGoogle Scholar
  12. Bitencourt, J. A., P. R. A. M. Affonso, L. Giuliano-Caetano & A. L. Dias, 2011b. Heterochromatin heterogeneity in Hypostomus prope unae (Steindachner, 1878) (Siluriformes, Loricariidae) from Northeastern Brazil. Comparative Cytogenetics 5: 329–344.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bitencourt, J. A., P. R. A. M. Affonso, L. Giuliano-Caetano, P. L. S. Carneiro & A. L. Dias, 2012. Population divergence and peculiar karyoevolutionary trends in the loricariid fish Hypostomus aff. unae from northeastern Brazil. Genetics and Molecular Research 11: 933–943.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bittner, L., S. Halary, C. Payri, C. Cruaud, B. Reviers, P. Lopez & E. Bapteste, 2010. Some considerations for analyzing biodiversity using integrative metagenomics and gene networks. Biology Direct 5: 47.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bockmann, F. A. & A. C. Ribeiro, 2003. Description of a new suckermouth armored catfish of the genus Pareiorhina (Siluriformes: Loricariidae) from southeastern Brazil. Ichthyological Exploration of Freshwaters 3: 231–242.Google Scholar
  16. Boeseman, M., 1968. The genus Hypostomus Lacépède, 1803, and its Surinam representatives (Siluriformes, Loricariidae). Zoologische Verhandelingen 99: 1–89.Google Scholar
  17. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge: 435p.Google Scholar
  18. Brown, S. D. J., R. A. Collins, S. Boyer, C. Lefort, J. Malumbres-Olarte, C. J. Vink & R. H. Cruickshank, 2012. SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12: 562–565.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bueno, V. S., C. H. Zawadzki & V. P. Margarido, 2012. Trends in chromosome evolution in the genus Hypostomus Lacépède, 1803 (Osteichthyes, Loricariidae): a new perspective about the correlation between diploid number and chromosomes types. Reviews in Fish Biology and Fisheries 22: 241–250.CrossRefGoogle Scholar
  20. Bueno, V. S., J. T. Konerat, C. H. Zawadzki, P. C. Venere, D. R. Blanco & V. P. Margarido, 2018. Divergent chromosome evolution in Hypostominae tribes (Siluriformes: Loricariidae): correlation of chromosomal data with morphological and molecular phylogenies. Zebrafish 5: 492–503.CrossRefGoogle Scholar
  21. Camelier, P. & A. M. Zanata, 2014. Biogeography of freshwater fishes from the Northeastern Mata Atlântica freshwater ecoregion: distribution, endemism, and area relationships. Neotropical Ichthyology 12: 683–698.CrossRefGoogle Scholar
  22. Carstens, B. C., T. A. Pelletier, N. M. Reid & J. D. Satler, 2013. How to fail at species delimitation. Molecular Ecology 22: 4369–4383.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Carvalho, D. C., D. A. A. Oliveira, P. S. Pompeu, C. G. Leal, C. Oliveira & R. Hanner, 2011. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River Basin. Mitochondrial DNA 22: 80–86.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Carvalho, P. H., S. M. Q. Lima, C. H. Zawadzki, C. Oliveira & M. De Pinna, 2015. Phylogeographic patterns in suckermouth catfish Hypostomus ancistroides (Loricariidae): dispersion, vicariance and species complexity across a Neotropical biogeographic region. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis 27: 3590–3596.CrossRefGoogle Scholar
  25. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Diniz, D. & P. M. Xavier, 2006. EasyIdio v. 3.0 [available on internet at http://geocities.yahoo.com.br/easyidio]. Accessed May 2016.
  27. Eschmeyer, W. N., J. D. Fong & R. Van-Der-Laan. Catalog of Fishes [available on internet at http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp]. Accessed 20 March 2019.
  28. Ezard, T., T. Fujisawa & T. G. Barraclough, 2009. Splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-18/r45 [available on internet at http://R-Forge.R-project.org/projects/splits/]. Accessed March 2019.
  29. Fernandes, C. A., D. S. Alves, A. R. Guterres & I. C. Martins-Santos, 2015. Cytogenetic analysis of two Loricariidae species (Teleostei, Siluriformes) from Iguatemi River (Parana River Drainage) in Brazil. Comparative Cytogenetics 9: 67–78.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ferraris Jr., C. J., 2007. Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa 1: 1–628.CrossRefGoogle Scholar
  31. Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.Google Scholar
  33. Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica 4: 9.Google Scholar
  34. Heracle BioSoft, 2013. Sequenciador de DNA Assembler v4 [available on internet at http://www.DnaBaser.com]. Accessed March 2017.
  35. Higuchi, H., H. A. Britski & J. C. Garavello, 1990. Kalyptodoras bahiensis, a new genus and species of thorny catfish from northeastern Brazil (Siluriformes: Doradidae). Ichthyological Exploration Freshwaters 3: 219–225.Google Scholar
  36. Hollanda-Carvalho, P. & C. Weber, 2004. Five new species of the Hypostomus cochliodon group (Siluriformes: Loricariidae) from the Middle and Lower Amazon System. Revue suisse de Zoologie 4: 953–978.CrossRefGoogle Scholar
  37. Howell, W. M. & D. A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.PubMedCrossRefGoogle Scholar
  38. Ivanova, N. V., T. S. Zemlak, R. H. Hanner & P. D. N. Hebert, 2006. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7: 544–548.CrossRefGoogle Scholar
  39. Jones, M., A. Ghoorah & M. Blaxter, 2011. jMOTU and Taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE 6: e19259.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kapli, T., S. Lutteropp, J. Zhang, K. Kobert, P. Pavlidis, A. Stamatakis & T. Flouri, 2016. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33: 1630–1638.Google Scholar
  41. Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Langerhans, R. B., 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48: 750–768.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Leigh, J. W. & D. Bryant, 2015. PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.CrossRefGoogle Scholar
  45. Levan, A., K. Fredga & A. A. Sanderberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  46. Lomolino, M. V., 2004. Conservation biogeography. In Lomolino, M. V. & L. R. Heaney (eds), Frontiers of Biogeography. Sunderland, Sinauer: 293–296.Google Scholar
  47. Lujan, N. K. & K. W. Conway, 2015. Life in the fast lane: a review of rheophily in freshwater fishes. In Riesch, R., M. Tobler & M. Plath (eds), Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments. Springer, London: 107–136.Google Scholar
  48. Lujan, N. K., D. P. German & K. O. Winemiller, 2011. Do wood grazing fishes partition their niche? Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology 25: 1327–1338.CrossRefGoogle Scholar
  49. Lujan, N. K., J. W. Armbruster, N. R. Lovejoy & H. Lopez-Fernandez, 2015. Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Molecular Phylogenetics and Evolution 82: 269–288.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Miller, M., W. Pfeiffer & T. Schwartz, 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), New Orleans, LA: 1–8.Google Scholar
  51. Molina, W. F., D. E. O. Alves, W. C. Araújo, P. A. Martinez, M. F. M. Silva & G. W. W. F. Costa, 2010. Performance of human immune stimulating agents in the improvement of fish cytogenetic preparations. Genetics and Molecular Research 9: 1807–1814.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Netto, M. R. C. B., E. Pauls & P. R. A. M. Affonso, 2007. A standard protocol for obtaining fish chromosomes under post-mortem conditions. Micron 38: 214–217.CrossRefGoogle Scholar
  53. Oliveira, R. R., I. L. Souza & P. C. Venere, 2006. Karyotype description of three species of Loricariidae (Siluriformes) and occurrence of the ZZ/ZW sexual system in Hemiancistrus spilomma Cardoso & Lucinda. Neotropical Ichthyology 4: 93–97.CrossRefGoogle Scholar
  54. Orfinger, A. B. & D. D. Goodding, 2018. The global invasion of the suckermouth armored catfish genus Pterygoplichthys (Siluriformes: Loricariidae): annotated list of species, distributional summary, and assessment of impacts. Zoological Studies 57: 7.Google Scholar
  55. Padial, J. M., A. Miralles, I. De La Riva & M. Vences, 2010. The integrative future of taxonomy. Frontiers in Zoology 7: 7–16.CrossRefGoogle Scholar
  56. Pereira, L. H. G., R. Hanner, F. Foresti & C. Oliveira, 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genomics 14: 20.CrossRefGoogle Scholar
  57. Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin & A. P. Vogler, 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Pugedo, M. L., F. R. A. Neto, T. C. Pessali, J. L. O. Birindelli & D. C. Carvalho, 2016. Integrative taxonomy supports new candidate fish species in a poorly studied Neotropical region: the Jequitinhonha River Basin. Genetica 3: 341–349.CrossRefGoogle Scholar
  59. Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 8: 1864–1877.CrossRefGoogle Scholar
  60. Ramirez, J. L., J. L. Birindelli, D. C. Carvalho, P. R. A. M. Affonso, P. C. Venere, H. Ortega, M. Carrillo-Avila, J. A. Rodríguez-Pulido & P. M. Galetti Jr., 2017. Revealing hidden diversity of the underestimated Neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Frontiers in Genetics 8: 149.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ratnasingham, S. & P. D. N. Hebert, 2013. A DNA-based registry for all animal species: the Barcode Index Number (BIN) System. PLoS ONE 8: e66213.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ray, C. K. & J. W. Armbruster, 2016. The genera Isorineloricaria and Aphanotorulus (Siluriformes: Loricariidae) with description of a new species. Zootaxa 4072: 501–539.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Ribeiro, A. C., 2006. Tectonic history and the biogeography of the freshwater fishes from the costal drainages of eastern Brazil: an example of fauna evolution associated with a divergent continental margin. Neotropical Ichthyology 4: 225–246.CrossRefGoogle Scholar
  64. Rohlf, F. J., 2017a. TPSDig2, Version 2.30. Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
  65. Rohlf, F. J., 2017b. TPSUtil, Version 1.74. Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
  66. Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, I. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Rosa, R. S., N. A. Menezes, H. A. Britski, W. J. E. M. Costa & F. Groth, 2004. Diversidade, padrões de distribuição e conservação dos peixes da Caatinga. pp. 135–180. In Leal, I. R., M. Tabarelli & J. M. C. da Silva (eds), Ecologia e conservação da Caatinga. Recife, Edufpe: 805p.Google Scholar
  69. Roxo, F. F., N. K. Lujan, V. A. Tagliacollo, B. T. Waltz, G. S. C. Silva, C. Oliveira & J. S. Albert, 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 6: e0178240.CrossRefGoogle Scholar
  70. Roxo, F. F., L. E. Ochoa, M. H. Sabaj, N. K. Lujan, R. Covain, G. S. C. Silva, B. F. Melo, J. S. Albert, J. Chang, F. Foresti, M. E. Alfaro & C. Oliveira, 2019. Phylogenomic reappraisal of the Neotropical catfish family Loricariidae (Teleostei: Siluriformes) using ultraconserved elements. Molecular Phylogenetics and Evolution.  https://doi.org/10.1016/j.ympev.2019.02.017.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rubert, M., R. Da Rosa, C. H. Zawadzki, S. Mariotto, O. Moreira-Filho & L. Giuliano-Caetano, 2016. Chromosome mapping of 18S ribosomal RNA genes in eleven Hypostomus species (Siluriformes, Loricariidae): diversity analysis of the sites. Zebrafish 13: 360–368.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Sardeiro, B., 2012. Uma nova espécie de Hypostomus Lacépède (Siluriformes: Loricariidae) da bacia do rio Paraguaçu e redescrição de Hypostomus unae (Steindachner, 1878), Estado da Bahia, Brasil. Unpublished Thesis, Universidade Federal da Bahia, Bahia.Google Scholar
  73. Sarkar, I. N., P. J. Planet & R. Desalle, 2008. Caos software for use in character-based DNA barcoding. Molecular Ecology Resources 8: 1256–1259.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sarmento-Soares, L. M., H. A. Britski, M. S. Anjos, A. M. Zanata, R. F. Martins-Pinheiro & M. G. Barretto, 2016. First record of genus Imparfinis from a northeastern coastal Brazilian River Basin: I. borodini Mees & Cala, 1989 in Rio de Contas, Bahia. Check List 12: 1832–1848.CrossRefGoogle Scholar
  75. Silva, G. S., F. F. Roxo, N. K. Lujan, V. A. Tagliacollo, C. H. Zawadzki & C. Oliveira, 2016. Transcontinental dispersal, ecological opportunity and origins of an adaptive radiation in the Neotropical catfish genus Hypostomus (Siluriformes: Loricariidae). Molecular Ecology 25: 1511–1529.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Slice, D., 2007. Geometric morphometrics. Annual Review of Anthropology 36: 261–281.CrossRefGoogle Scholar
  77. Souza, C. R., P. R. A. M. Affonso, J. A. Bitencourt, I. Sampaio & P. L. S. Carneiro, 2018. Species validation and cryptic diversity in the Geophagus brasiliensis Quoy & Gaimard, 1824 complex (Teleostei, Cichlidae) from Brazilian Coastal Basins as revealed by DNA analyses. Hydrobiologia 809: 309–321.CrossRefGoogle Scholar
  78. Stamatakis, A., 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Suchard, M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond & A. Rambaut, 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. N. Hebert, 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360: 1847–1857.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Whittaker, R. J., M. B. Araújo, P. Jepson, R. J. Ladle, J. E. M. Watson & K. J. Willis, 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions 11: 3–24.CrossRefGoogle Scholar
  83. Zanata, A. M. & B. R. Pitanga, 2016. A new species of Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae) from Rio Itapicuru Basin, Bahia State, Brazil. Zootaxa 2: 223–232.CrossRefGoogle Scholar
  84. Zanata, A. M., B. Sardeiro & C. H. Zawadzki, 2013. A new dark-dotted species of Hypostomus Lacépède (Siluriformes: Loricariidae) from rio Paraguaçu, Bahia State, Brazil. Neotropical Ichthyology 11: 247–256.CrossRefGoogle Scholar
  85. Zawadzki, C. H., E. Renesto & R. P. Mateus, 2008. Allozyme analysis of Hypostomus (Teleostei: Loricariidae) from the Rio Corumbá, Upper Rio Paraná Basin, Brazil. Biochemical Genetics 46: 755–769.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Zawadzki, C. H., P. H. Carvalho, J. L. O. Birindelli & F. M. Azevedo, 2016. Hypostomus nigrolineatus, a new dark-striped species from the rio Jequitinhonha and Rio Pardo Basins, Brazil (Siluriformes, Loricariidae). Ichthyological Exploration of Freshwaters 27: 263–274.Google Scholar
  87. Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de BiologiaUniversidade Federal da BahiaSalvadorBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Estadual do Sudoeste da BahiaJequiéBrazil
  3. 3.Programa de Pós-Graduação em Biologia Animal-Universidade Federal do Espírito SantoVitóriaBrazil
  4. 4.Pontifícia Universidade Católica de Minas GeraisBelo HorizonteBrazil
  5. 5.Department of Biological SciencesAuburn UniversityAuburnUSA

Personalised recommendations