Advertisement

Micro-meiofauna morphofunctional traits linked to trophic activity

  • Julie Neury-OrmanniEmail author
  • Jacky Vedrenne
  • Margot Wagner
  • Gwilherm Jan
  • Soizic Morin
MEIOFAUNA IN FRESHWATER ECOSYSTEMS Review Paper

Abstract

While the important role of algae and bacteria is widely recognized in freshwater ecosystems, that of minute grazers, despite their high abundance, remains poorly understood. By their consumption of microalgae, their role in the microbial loop, and even their movements in the biofilm, they improve the rejuvenation of this type of ecosystem and have an important function in the connectivity of interfaces. In this study, we approach diversity issues from the standpoint of morphofunctional traits of periphytic micro-meiofauna. We collected and coded morphofunctional characteristics for several micro-meiofauna species from the literature and from our own observations to create a micro-meiofauna morphofunctional traits database inspired by the model of Usseglio-Polatera et al. (Freshw Biol 43(2):175–205, 2001). This new database of traits may represent an interesting collaborative tool which could be used to improve knowledge on micro-meiofauna and their functional role in the biofilm. We used the information to explore variations in functional traits related to trophic activity among micro-meiofauna communities. Counting data were acquired from biofilms grown in a hypereutrophic pond (Aquitaine, France) in winter and in spring. Community-weighted means (CWM) computed using the database and counting data revealed Spring food web was more complex than winter food web.

Keywords

Ecology Diversity Microorganisms Biofilm Community 

Notes

Acknowledgements

We thank Mélissa Eon and Brigitte Delest, Betty Chaumet and Aurélie Moreira for physical and chemical and toxic analyses, and Sylvia Moreira for water chlorophyll measurements. We are grateful to Nabil Majdi, Walter Traunspurger and Jenny Schmid-Araya for inviting us to contribute to the Meiofauna special issue. We thank the reviewers which gave helpful comments that improved the paper considerably and Emilie Saulnier-Talbot for English grammar. This work was partially supported by the Adour-Garonne Water Agency.

Supplementary material

10750_2019_4120_MOESM1_ESM.xlsx (102 kb)
Supplementary material 1 (XLSX 101 kb)

References

  1. Agresti, A., 1992. A survey of exact inference for contingency tables. Statistical science 7(1): 131–153.CrossRefGoogle Scholar
  2. Artois, T., D. Fontaneto, W. D. Hummon, S. J. McInnes, M. A. Todaro, M. V. Sørensen & A. Zullini, 2011. Ubiquity of microscopic animals? Evidence from the morphological approach in species identification. Biogeography of microscopic organisms, is everything small everywhere:244–283.Google Scholar
  3. Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romani & A. I. Packmann, 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14(4): 251.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bērzinš, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175(3): 223–231.CrossRefGoogle Scholar
  5. Biggs, B. J. F., 1990. Periphyton communities and their environments in New Zealand rivers. New Zealand Journal of Marine and Freshwater Research 24(3): 367–386.CrossRefGoogle Scholar
  6. Bortolus, A., 2008. Error Cascades in the Biological Sciences: The Unwanted Consequences of Using Bad Taxonomy in Ecology, vol 37. BIOONE.Google Scholar
  7. Callow, M. E., 2000. Algal biofilms. In Evans, L. V. (ed.), Biofilms: Recent Advances in Their Study and Control. Harwood Academic Publ, Amsterdam: 189–209.Google Scholar
  8. Canter, E. J., C. Cuellar-Gempeler, A. I. Pastore, T. E. Miller & O. U. Mason, 2018. Predator identity more than predator richness structures aquatic microbial assemblages in Sarracenia purpurea leaves. Ecology 99(3): 652–660.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cox, E. J., 1996. Identification of freshwater diatoms from live material, Vol. 158. Chapman & Hall, London.Google Scholar
  10. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10(1): 147–172.CrossRefGoogle Scholar
  11. Elwood, J. W. & D. J. Nelson, 1972. Periphyton production and grazing rates in a stream measured with a 32P material balance method. Oikos 23: 295–303.CrossRefGoogle Scholar
  12. Erken, M., N. Farrenschon, S. Speckmann, H. Arndt & M. Weitere, 2012. Quantification of individual flagellate – bacteria interactions within semi-natural biofilms. Protist 163(4): 632–642.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Estifanos, T. K., W. Traunspurger & L. Peters, 2013. Selective feeding in nematodes: a stable isotope analysis of bacteria and algae as food sources for free-living nematodes. Nematology 15(1): 1–13.CrossRefGoogle Scholar
  14. Foissner, W., 1996. A user-friendly guide to the ciliate (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.Google Scholar
  15. Foissner, W., H. Blatterer, H. Berger & F. Kohmann, 1991. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Band I: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea, vol 1/91. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft.Google Scholar
  16. Foissner, W., H. Berger & F. Kohmann, 1992. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Band II: Peritrichia, Heterotrichida, Odontostomatida, vol 5/92. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft.Google Scholar
  17. Foissner, W., H. Berger & F. Kohmann, 1994. Taxonomische und ökologische revision der ciliaten des saprobiensystems : band III. Hymenostomata, Prostomatida, Nassulida. Bayerisches Landesamt fûr Wasserwirtschaft, Munchen, DEUGoogle Scholar
  18. Foissner, W., H. Berger, H. Blatterer & F. Kohmann, 1995. Taxonomische und ökologische revision der ciliaten des saprobiensystems : band IV. Gymnostomatea, Loxodes, Suctoria. Bayerisches Landesamt fûr Wasserwirtschaft, Munchen, DEUGoogle Scholar
  19. Gravel, D., C. Albouy & W. Thuiller, 2016. The meaning of functional trait composition of food webs for ecosystem functioning. Philosophical Transactions of the Royal Society B: Biological Sciences.  https://doi.org/10.1098/rstb.2015.0268.CrossRefGoogle Scholar
  20. Hillebrand, H., 2002. Top-down versus bottom-up control of autotrophic biomass – a meta-analysis on experiments with periphyton. Journal of the North American Benthological Society 21(3): 349–369.CrossRefGoogle Scholar
  21. Hillebrand, H. & M. Kahlert, 2001. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography 46(8): 1881–1898.CrossRefGoogle Scholar
  22. Jassey, V. E., M. Lamentowicz, L. Bragazza, M. L. Hofsommer, R. T. Mills, A. Buttler, C. Signarbieux & B. J. Robroek, 2016. Loss of testate amoeba functional diversity with increasing frost intensity across a continental gradient reduces microbial activity in peatlands. European Journal of Protistology 55: 190–202.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jiang, Y., H. Xu, X. Hu, M. Zhu, K. A. Al-Rasheid & A. Warren, 2011. An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Marine Pollution Bulletin 62(2): 227–235.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kanavillil, N. & S. Kurissery, 2013. Dynamics of grazing protozoa follow that of microalgae in natural biofilm communities. Hydrobiologia 718(1): 93–107.CrossRefGoogle Scholar
  25. Kathol, M., H. Fischer & M. Weitere, 2011. Contribution of biofilm-dwelling consumers to pelagic–benthic coupling in a large river. Freshwater Biology 56(6): 1160–1172.CrossRefGoogle Scholar
  26. Kendrick, M. R. & A. D. Huryn, 2015. Discharge, legacy effects and nutrient availability as determinants of temporal patterns in biofilm metabolism and accrual in an arctic river. Freshwater Biology 60(11): 2323–2336.CrossRefGoogle Scholar
  27. Kydd, J., H. Rajakaruna, E. Briski & S. Bailey, 2018. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size. Journal of Sea Research 133: 2–10.CrossRefGoogle Scholar
  28. Laliberté, E., P. Legendre, B. Shipley & M. E. Laliberté, 2014. Package ‘FD’. Measuring functional diversity from multiple traits, and other tools for functional ecology.Google Scholar
  29. Lavorel, S., K. Grigulis, S. McIntyre, N. S. Williams, D. Garden, J. Dorrough, S. Berman, F. Quétier, A. Thébault & A. Bonis, 2008. Assessing functional diversity in the field–methodology matters! Functional Ecology 22(1): 134–147.Google Scholar
  30. Levine, J. M., 2015. A trail map for trait-based studies. Nature 529: 163.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lischke, B., G. Weithoff, S. A. Wickham, K. Attermeyer, H.-P. Grossart, K. Scharnweber, S. HIlt & U. Gaedke, 2015. Large biomass of small feeders: ciliates may dominate herbivory in eutrophic lakes. Journal of Plankton Research 38(1): 2–15.CrossRefGoogle Scholar
  32. Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo & S. E. Charlton, 1984. River Epilithon: toward a structural-functional model. Oikos 42(1): 10–22.CrossRefGoogle Scholar
  33. Lorenzen, C. & S. Jeffrey, 1980. Determination of chlorophyll in seawater. UNESCO Technical Paper in Marine Science 35(1): 1–20.Google Scholar
  34. Majdi, N., B. Mialet, S. Boyer, M. Tackx, J. Leflaive, S. Boulêtreau, L. Ten-Hage, F. Julien, R. Fernandez & E. Buffan-Dubau, 2011. The relationship between epilithic biofilm stability and its associated meiofauna under two patterns of flood disturbance. Freshwater Science 31(1): 38–50.CrossRefGoogle Scholar
  35. Majdi, N., M. Tackx & E. Buffan-Dubau, 2012. Trophic positioning and microphytobenthic carbon uptake of biofilm-dwelling meiofauna in a temperate river. Freshwater Biology 57(6): 1180–1190.CrossRefGoogle Scholar
  36. Martin, E. C., K. B. Gido, N. Bello, W. K. Dodds & A. Veach, 2016. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams. Freshwater Biology 61(6): 887–898.CrossRefGoogle Scholar
  37. Muscarella, R. & M. Uriarte, 2016. Do community-weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society B: Biological Sciences 283(1827): 20152434.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Neury-Ormanni, J., J. Vedrenne & S. Morin, 2016. Who eats who in biofilms? Exploring the drivers of microalgal and micro-meiofaunal abundance. Botany Letters 163(2): 83–92.CrossRefGoogle Scholar
  39. Norf, H. & M. Weitere, 2010. Resource quantity and seasonal background alter warming effects on communities of biofilm ciliates. FEMS Microbiology Ecology 74(2): 361–370.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Paine, R. T., 1966. Food web complexity and species diversity. The American Naturalist 100(910): 65–75.CrossRefGoogle Scholar
  41. Pakeman, R. J., E. Garnier, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Doležal, O. Eriksson, H. Freitas, C. Golodets, J. Kigel, M. Kleyer, J. Lepš, T. Meier, M. Papadimitriou, V. P. Papanastasis, H. Quested, F. Quétier, G. Rusch, M. Sternberg, J.-P. Theau, A. Thébault & D. Vile, 2008. Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology 96(2): 355–366.CrossRefGoogle Scholar
  42. Petchey, O. L., P. T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402(6757): 69.CrossRefGoogle Scholar
  43. Pfister, G., B. Auer & H. Arndt, 2002. Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes – a community analysis at the species level. Limnologica – Ecology and Management of Inland Waters 32(2): 147–168.CrossRefGoogle Scholar
  44. Pratt, J. R. & J. Cairns, 1985. Functional groups in the protozoa: roles in differing ecosystems 1,2. The Journal of Protozoology 32(3): 415–423.CrossRefGoogle Scholar
  45. Schmid-Araya, J. M. & P. E. Schmid, 2000. Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwater Biology 44(1): 149–163.CrossRefGoogle Scholar
  46. Schmitz, O. J., R. W. Buchkowski, K. T. Burghardt & C. M. Donihue, 2015. Functional traits and trait-mediated interactions: connecting community-level interactions with ecosystem functioning. In Pawar, S., G. Woodward & A. I. Dell (eds), Advances in Ecological Research, Vol. 52. Academic Press, New York: 319–343.Google Scholar
  47. Schroeder, F., W. Traunspurger, K. Pettersson & L. Peters, 2012. Temporal changes in periphytic meiofauna in lakes of different trophic states. Journal of Limnology 71(1): e23-e23.CrossRefGoogle Scholar
  48. Sekar, R., K. Nair, V. Rao & V. Venugopalan, 2002. Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshwater Biology 47(10): 1893–1907.CrossRefGoogle Scholar
  49. Stanca, E., M. Cellamare & A. Basset, 2013. Geometric shape as a trait to study phytoplankton distributions in aquatic ecosystems. Hydrobiologia 701(1): 99–116.CrossRefGoogle Scholar
  50. Tachet, H., P. Richoux, M. Bourneau & P. Usseglio-Polatera, 2010. Freshwater Invertebrates, Systematics, Biology. Ecology CNRS Editions, Paris.Google Scholar
  51. Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2001. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43(2): 175–205.CrossRefGoogle Scholar
  52. Villanueva, V. D., J. Font, T. Schwartz & A. M. Romaní, 2011. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling 27(1): 59–71.CrossRefGoogle Scholar
  53. Villéger, S., N. W. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8): 2290–2301.CrossRefGoogle Scholar
  54. Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116(5): 882–892.CrossRefGoogle Scholar
  55. Watson, M. G., A. J. Scardino, L. Zalizniak & J. Shimeta, 2015. Colonisation and succession of marine biofilm-dwelling ciliate assemblages on biocidal antifouling and fouling-release coatings in temperate Australia. Biofouling 31(9–10): 709–720.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Weisse, T., R. Anderson, H. Arndt, A. Calbet, P. J. Hansen & D. J. S. Montagnes, 2016. Functional ecology of aquatic phagotrophic protists – concepts, limitations, and perspectives. European Journal of Protistology 55: 50–74.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Weitere, M., M. Erken, N. Majdi, H. Arndt, H. Norf, M. Reinshagen, W. Traunspurger, A. Walterscheid & J. K. Wey, 2018. The food web perspective on aquatic biofilms. Ecological Monographs.  https://doi.org/10.1002/ecm.1315.CrossRefGoogle Scholar
  58. Xu, Y., T. Stoeck, D. Forster, Z. Ma, L. Zhang & X. Fan, 2018. Environmental status assessment using biological traits analyses and functional diversity indices of benthic ciliate communities. Marine Pollution Bulletin 131: 646–654.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Irstea, UR EABXCestas CedexFrance

Personalised recommendations