Skip to main content

Advertisement

Log in

Annual phytoplankton cycle in a meromictic anoxic basin of a Rhode Island (USA) estuarine river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Estuarine Pettaquamscutt River is a unique habitat 10 km in length with physical and biogeochemical characteristics analogous to a miniature fjord. Its meromictic upper basins are characterized by a permanent oxic–anoxic vertical gradient in which a well-oxygenated upper layer overlies a deeper, anoxic reservoir, with persistent blooms of phototrophic anoxygenic bacteria (Chromatium, Chlorobium) at the oxic–anoxic transition layer. A diverse assemblage of nanoplanktonic, centric diatoms (Cyclotella caspia, Thalassiosira pseudonana, cf. Cyclotella cryptica) dominated the seasonal phytoplankton cycle in the aerobic layer, similar to comparable meromictic habitats elsewhere. This assemblage of nano-centric diatoms appears to be trait-separated from other species clusters and is potentially useful as a functional group flora with ecophysiology diagnostic of marine estuarine rivers and meromictic habitat niche structure. The most conspicuous phytoplankton feature, however, was the year-round occurrence of the photoautotrophic euglenid Euglenaformis (Euglena) proxima, restricted in its upper water column distribution to the O2–H2S boundary layer where it formed a consortium with the photosynthetic green and purple sulfur bacteria community. The association of E. proxima with meromixis, H2S, and phototrophic anoxygenic bacteria is similar to that reported previously in a brackish Norwegian oyster poll and a brackish loch in Scotland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bennett, M. S., K. E. Wiegert & R. E. Triemer, 2014. Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima Euglenophyta). Phycologia 53: 66–73.

    CAS  Google Scholar 

  • Boothroyd, J. C., 1991. The geologic history of Narrow River. Maritimes 35: 3–5.

    Google Scholar 

  • Braarud, T. & B. Føyn, 1958. Phytoplankton observations in a brackish water locality of southeast Norway. Nytt Magasin for Botanikk 6: 47–73.

    Google Scholar 

  • Broenkow, W. W. & J. D. Cline, 1969. Colorimetric determination of dissolved oxygen at low concentrations. Limnology and Oceanography 14: 450–454.

    CAS  Google Scholar 

  • Carritt, D. E. & J. H. Carpenter, 1965. Accuracy of the Winkler method for dissolve oxygen analysis. Limnology and Oceanography 10: 135–143.

    Google Scholar 

  • Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.

    CAS  Google Scholar 

  • Cloern, J. E., B. E. Cole & R. S. Oremland, 1983. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnology and Oceanography 28: 1049–1061.

    CAS  Google Scholar 

  • de Madariaga, I., 1995. Photosynthetic characteristics of phytoplankton during the development of a summer bloom in Urdaibai Estuary, Bay of Biscay. Estuarine, Coastal and Shelf Science 40: 559–575.

    Google Scholar 

  • Durbin, A. G., S. W. Nixon & C. A. Oviatt, 1979. Effects of the spawning migration of the alewife, Alosa pseudoharengus, on freshwater ecosystems. Ecology 60: 8–17.

    Google Scholar 

  • Fanning, K. A. & M. E. Q. Pilson, 1972. A model for the anoxic zone of the Cariaco Trench. Deep-Sea Research 19: 847–863.

    CAS  Google Scholar 

  • Fenchel, T. & B. J. Finlay, 1995. Ecology and Evolution in Anoxic Worlds. Oxford Series in Ecology and Evolution, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Fenchel, T., C. Bernard, G. Esteban, et al., 1955. Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia 43: 45–100.

    Google Scholar 

  • Furnas, M. J., T. J. Smayda & C. R. Tomas, 1989. Persistent dinoflagellate blooms in a small marine cove. I. Effect of wind and tidal currents. Marine Nature 2: 79–93.

    Google Scholar 

  • Furnas, M. J., T. J. Smayda & C. R. Tomas, 1990. Persistent dinoflagellate blooms in a small marine cove. II. Tidal fluxes of nutrients and phytoplankton. Marine Nature 3: 9–28.

    Google Scholar 

  • Gaines, A.G. Jr., 1975. Papers on the geomorphology, hydrography, and geochemistry of the Pettaquamscutt River. Ph.D. Thesis. University of Rhode Island, 278.

  • Gaines, A. G. & M. E. Q. Pilson, 1972. Anoxic water in the Pettaquamscutt River. Limnology and Oceanography 17: 42–49.

    CAS  Google Scholar 

  • Genovese, S., 1963. The distribution of the H2S in the Lake of Faro (Messina) with particular regard to the presence of “red water”. In Oppenheimer, C. H. (ed.), Symposium on Marine Microbiology. C.C Thomas Publisher, Springfield: 194–204.

    Google Scholar 

  • Goldberg, E. G., E. Gamble, J. J. Griffin & M. Koide, 1977. Pollution history of Narragansett Bay as recorded in its sediments. Estuarine, Coastal and Shelf Science 5: 549–561.

    CAS  Google Scholar 

  • Guerrero, R., E. Montesinos, C. Pedrós-Alió, et al., 1985. Phototrophic sulfur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnology and Oceanography 30: 919–931.

    CAS  Google Scholar 

  • Guillard, R. R. L. & S. Myklestad, 1970. Osmotic and ionic requirements of the marine centric diatom Cyclotella nana. Helgoländer wissenschaftliche Meeresuntersuchun 20: 104–110.

    CAS  Google Scholar 

  • Hargraves, P. E. & B. Thorne Miller, 1974. The ebridian flagellate Hermesinum adriaticum Zach. Archive für Protistenkunde 116: 280–284.

    Google Scholar 

  • Hasle, G. R., 1978. Some freshwater and brackish species of the diatom genus Thalassiosira Cleve. Phycologia 17: 263–292.

    Google Scholar 

  • Hasle, G. R. & B. R. Heimdal, 1970. Some species of the centric diatom genus Thalassiosira studied in the light and electron microscopes. Beihefte zur Nova Hedwigia 31: 543–581.

    Google Scholar 

  • Hasle, G. R. & G. A. Fryxell, 1977. The genus Thalassiosira: some species with a linear areola array. Beihefte zur Nova Hedwigia 54: 15–66.

    Google Scholar 

  • Holmes, R. W., 1970. The Secchi disk in turbid coastal waters. Limnology and Oceanography 15(688–554): 694.

    Google Scholar 

  • Hulburt, E. M., 1956. The phytoplankton of Great Pond, Massachusetts. Biological Bulletin 110: 157–168.

    Google Scholar 

  • Hulburt, E. M., 1963. The diversity of phytoplanktonic populations in oceanic, coastal, and estuarine regions. Journal of Marine Research 21: 81–93.

    Google Scholar 

  • Iizuka, S., 1972. Gymnodinium-’65 red tide occurring in anoxic environment of Omura Bay. Bay. Bulletin of the Plankton Society of Japan 19: 13–21.

    Google Scholar 

  • Iizuka, S. & H. Irie, 1969. Anoxic status of bottom waters and occurrences of Gymnodiniium red water in Omura Bay. Bulletin of the Plankton Society of Japan 16: 99–115.

    Google Scholar 

  • Iizuka, S. & T. Nakashima, 1975. Response of red tide organisms to sulphide. Bulletin of the Plankton Society of Japan 22: 27–32.

    Google Scholar 

  • Jackson, R. H., P. J. Lebour Williams Jr. & I. R. Joint, 1987. Freshwater phytoplankton in the low salinity region of the River Tamar estuary. Estuarine, Coastal and Shelf Science 25: 299–311.

    CAS  Google Scholar 

  • Johnson, P. W., P. L. Donaghay, E. B. Small & J. M. Sieburth, 1995. Ultrastructure and ecology of Perspira ovum (Ciliophora: Litostomatea): an aerobic, planktonic ciliate that sequesters the chloroplasts, mitochondria, and paramylon of Euglena proxima in a micro-oxic habitat. Journal of Eukaryotic Microbiology 42: 323–335.

    Google Scholar 

  • Karentz, D. & T. J. Smayda, 1984. Temperature and the seasonal occurrence pattern of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959–1980). Marine Ecology Progress Series 18: 277–293.

    Google Scholar 

  • Kennett, D. M., 1983. Benthic subtidal diatom flora and sulfide fluctuations in the upper basin of Pettaquamscutt River. M.S. Thesis, University of Rhode Island, 121.

  • Kennett, D. M. & P. E. Hargraves, 1984. Subtidal benthic diatoms from a stratified estuarine basin. Botanica Marina 27: 169–183.

    Google Scholar 

  • Kennett, D. M. & P. E. Hargraves, 1985. Benthic diatoms and sulfide fluctuations: upper basin of Pettaquamscutt River, Rhode Island. Estuarine, Coastal and Shelf Science 21: 577–586.

    CAS  Google Scholar 

  • Klavestad, N., 1957. An ecological study of the vegetation in Hunnebunnen, an old oyster poll in south-eastern Norway. Nytt Magasin for Botanikk 5: 63–100.

    Google Scholar 

  • Lindholm, T. & X. Weppling, 1997. Blooms of phototrophic bacteria and phytoplankton in a small brackish lake on Aaland, SW Finland. Acta Academiae Aboensis 47: 45–53.

    Google Scholar 

  • Marshall, S. M., 1947. An experiment in marine fish cultivation. III. The plankton of a fertilized loch. The Proceedings Royal Society of Edinburgh Series B 63: 21–33.

    CAS  Google Scholar 

  • Marshall, S. M. & A. P. Orr, 1948. Further experiments on the fertilization of a sea loch (Loch Craiglin). The effect of different plant nutrients on the phytoplankton. Journal of the Marine Biological Association of the Marine Biological Association of the United Kingdom 27: 360–379.

    CAS  Google Scholar 

  • Moncrieff, R. W., 1967. The Chemical Senses. Leonard Hill, London.

    Google Scholar 

  • Noland, L. E. & M. Gojdics, 1967. Ecology of free-living protozoa. In Chen, T. (ed.), Research in Protozoology, Vol. 2. Pergamon Press, Oxford: 215–266.

    Google Scholar 

  • Orive, E., A. Iriarte, I. de Madariaga & M. Revilla, 1998. Phytoplankton blooms in the Urdaibai estuary during summer: physico-chemical conditions and taxa involved. Oceanologica Actga 21: 293–305.

    CAS  Google Scholar 

  • Orr, A. P., 1947. An experiment in marine fish cultivation: II. Some physical and chemical conditions in a fertilized sea-loch (Loch Craiglin, Argyll). Proceedings Royal Society of Edinburgh Series B 63: 3–20.

    CAS  Google Scholar 

  • Orr, W. L. & A. G. Gaines Jr., 1974. Observations on the rate of sulfate reduction and organic matter oxidation in the bottom waters of an estuarine basin: the upper basin of the Pettaquamscutt River (Rhode Island). In Tisson, B. & F. Bienner (eds), Advances in Organic Geochemistry. Editions Technics, Paris: 791–812.

    Google Scholar 

  • Paasche, E., 1971. A simple method for establishing bacteria-free cultures of photoautrophic flagellates. Journal du Conseil International pour l’Exploration de la Mer 33: 509–511.

    Google Scholar 

  • Pedrós-Alió, C., J. M. Gaso & R. Guerrero, 1987. On the ecology of a Cryptomonas phaseolus population forming a meta-limnetic bloom in Lake Cisco, Spain. Annual distribution and loss factors. Limnology and Oceanography 32: 285–298.

    Google Scholar 

  • Requejo, A. G., J. G. Quinn, J. N. Gearing & P. Gearing, 1984. C25 and C30 biogenic alkenes in a sediment core from the upper anoxic basin of the Pettaquamscutt River (Rhode Island, U.S.A.). Organic Geochemistry 7: 1–10.

    CAS  Google Scholar 

  • Reynolds, C. S., V. L. Huszar, V. L. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Google Scholar 

  • Richards, F. A., 1965. Anoxic basins and fjords. In Riley, J. P. & G. Skirrow (eds), Chemical Oceanography, Vol. 1. Academic Press, New York: 611–645.

    Google Scholar 

  • Rines, J. E. B. & P. E. Hargraves, 1987. The seasonal distribution of the marine diatom genus Chaetoceros Ehr. in Narragansett Bay, Rhode Island (1981–1982). Journal of Plankton Research 9: 917–933.

    Google Scholar 

  • Scranton, M. I., P. Crill, M. A. deAngelis, et al., 1993. The importance of episodic events in controlling the flux of methane from an anoxic basin. Global Biogeochemical Cycles 7: 491–507.

    CAS  Google Scholar 

  • Sieburth, J. M. & P. L. Donaghay, 1993. Planktonic methane production and oxidation within the algal maximum of the pycnocline: seasonal fine-scale observations in an anoxic estuarine basin. Marine Ecology Progress Series 100: 3–15.

    CAS  Google Scholar 

  • Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology 8: 353–414.

    Google Scholar 

  • Smayda, T. J., 1973. A survey of phytoplankton dynamics in the coastal waters from Cape Hatteras to Nantucket. In Coastal and Offshore Environmental Inventory, Cape Hatteras to Nantucket Shoals. Marine Publication Series No. 2, University of Rhode Island: 3.1–3.100.

  • Smayda, T. J., 1998. Patterns of variability characterizing marine phytoplankton, wit examples from Narragansett Bay. ICES Journal of Marine Science 55: 562–573.

    Google Scholar 

  • Sørensen, K., 1988. The distribution and biomass of phytoplankton and phototrophic bacteria in Framvaren, a permanently anoxic fjord in Norway. Marine Chemistry 23: 229–241.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. A practical handbook of seawater analysis. Bulletin of the Fishery Research Board of Canada 167: 1–203.

    Google Scholar 

  • Takahashi, M. & S. Ichimura, 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnology and Oceanography 13: 644–655.

    Google Scholar 

  • Takahashi, M. & S. Ichimura, 1970. Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnology and Oceanography 15: 929–944.

    CAS  Google Scholar 

  • Throndsen, J., G. R. Hasle & K. Tangen, 2007. Phytoplankton of Norwegian coastal waters. Almater Forlag, Oslo: 343.

    Google Scholar 

  • Tomas, C. R. & T. J. Smayda, 2008. Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7: 308–317.

    CAS  Google Scholar 

  • Trigueros, J. M. & E. Orive, 2000. Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary. Journal of Plankton Research 22: 969–986.

    Google Scholar 

  • Trüper, H. G., 1970. Culture and isolation of phototrophic sulfur bacteria from the marin environment. Helgoländer wissenschaftliche Meeresuntersuchungen 20: 6–16.

    Google Scholar 

  • Trüper, H. G. & S. Genovese, 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13: 225–232.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–39.

    Google Scholar 

  • Vargo, S. L. & A. N Sastry, 1977. Interspecific differences in tolerance of Eurytemora affinis and Acartia tonsa from an estuarine anoxic basin to low dissolved oxygen and hydrogen sulfide. In D. S. McLusky & A. J. Berry (eds), Physiology and Behavior of Marine Organisms. Proceedings 12th European Symposium on Marine Biology. Pergamon Press, Oxford. 219–226.

  • Whelan, J. K., M. A. Blanchette & J. M. Hunt, 1983. olatile C1–C7 organic compounds in an anoxic sediment core from the Pettaquamscutt River (Rhode Island). Organic Geochemistry 5: 29–33.

    CAS  Google Scholar 

  • Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom 47: 23–31.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was aided by the Environmental Protection Agency’s Science to Achieve Results (STAR) Program funded by EPA Grant No. R83-2443. The STAR program is managed by the EPA’s Office of Research and Development (ORD), National Center for Environmental Research and Quality Assurance (NCERQA). STAR research supports the Agency’s mission to safe guard human health and the environment. We thank Dr. Paul Hargraves for his assistance in identifying the nano-centric diatoms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Tomas.

Additional information

Handling editor: Luigi Naselli-Flores

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript was originally begun by Dr. Theodore J. Smayda and Ms. Boyce Thorne-Miller. After the onset of Dr. Smayda’s illness, he requested that corresponding author complete the manuscript for publication. Honoring this wish this manuscript is published posthumously.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smayda, T.J., Thorne-Miller, B. & Tomas, C. Annual phytoplankton cycle in a meromictic anoxic basin of a Rhode Island (USA) estuarine river. Hydrobiologia 847, 501–518 (2020). https://doi.org/10.1007/s10750-019-04113-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04113-z

Keywords

Navigation