Skip to main content

Advertisement

Log in

Hyporheic secondary production and life history of a common Ozark stonefly

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The hyporheic zone plays a key role in stream ecosystem function, but the quantity of biomass produced in this unique and rarely sampled habitat remains underappreciated. We measured hyporheic secondary production and life history characteristics of a stonefly, Leuctra tenuis (Pictet, 1841), in two Ozark streams with extensive gravel beds: a mainstem perennial stream and a tributary with ephemeral surface flow. L. tenuis nymphs were collected 30–45 cm below the streambed surface in both locations monthly for a year (2017–2018). Annual hyporheic secondary production of L. tenuis was 15.23 mg m−2 of streambed (95% CI 12.00–20.41) in the mainstem and 2.61 mg m−2 (95% CI 0.95–4.83) in the tributary. Annual benthic production of L. tenuis collected concurrently from the mainstem was 12.06 mg m−2 (95% CI 6.77–17.73). L. tenuis was univoltine and completed nymphal development in 8 months and approximately 3900 degree days (starting 20 January). This study is the first to measure hyporheic secondary production in the Ozarks, where many streams have deep hyporheic zones that could contribute substantial biomass to stream and riparian food webs. Our results, based on just one species of a diverse hyporheos, indicate the need for more ecological research in this habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, R. T., 1990. Insect endemism in the interior highlands of North America. Florida Entomologist 73: 539–569.

    Google Scholar 

  • Benke, A. C., 1984. Secondary production of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York: 289–322.

    Google Scholar 

  • Benke, A. C., 1993. Concepts and patterns of invertebrate production in running waters. Internationale Vereinigung für theoretische und angewandte Limnologie 25: 15–38.

    Google Scholar 

  • Benke, A. C., & A. D. Huryn, 2010. Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society 29: 264–285.

    Google Scholar 

  • Benke, A. C. & A. D. Huryn, 2017. Secondary production and quantitative food webs. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, Cambridge: 235–254.

    Google Scholar 

  • Benke, A. C. & B. J. Wallace, 1980. Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream. Ecology 61: 108–118.

    Google Scholar 

  • Benke, A. C., R. L. Henry, D. M. Gillespie & R. J. Hunter, 1985. Importance of snag habitat for animal production in southeastern streams. Fisheries 10: 8–13.

    Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Google Scholar 

  • Bottová, K., P. Beracko, J. Manuel & T. De Figueroa, 2013. Life cycle, feeding and secondary production of Plecoptera community in a constant temperature stream in Central Europe. Limnologica-Ecology and Management of Inland Waters 43: 27–33.

    Google Scholar 

  • Bou, C. & R. Rouch, 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. Comptes Rendus de l’Academie de la Science Paris 265: 369–370.

    Google Scholar 

  • Boulton, A. J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52: 632–650.

    Google Scholar 

  • Boulton, A. J., M. R. Scarsbrook, J. M. Quinn & G. P. Burrell, 1997. Land-use effects on the hyporheic ecology of five small streams near Hamilton, New Zealand. New Zealand Journal of Marine and Freshwater Research 31: 609–622.

    CAS  Google Scholar 

  • Boulton, A. J., M.-J. Dole-Olivier & P. Marmonier, 2004. Effects of sample volume and taxonomic resolution on assessment of hyporheic assemblage composition sampled using a Bou-Rouch pump. Archiv für Hydrobiologie 159: 327–355.

    Google Scholar 

  • Cadmus, P., J. P. F. Pomeranz & J. M. Kraus, 2016. Low-cost floating emergence net and bottle trap: comparison of two designs. Journal of Freshwater Ecology Taylor & Francis 31: 653–658.

    Google Scholar 

  • Cardenas, M. B., J. L. Wilson & V. A. Zlotnik, 2004. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research 40: W083071–W0830713.

    Google Scholar 

  • Collier, K. J., A. E. Wright-Stow & B. J. Smith, 2004. Trophic basis of production for a mayfly in a North Island New Zealand forest stream: contributions of benthic versus hyporheic habitats and implications for restoration. New Zealand Journal of Marine and Freshwater Research 38: 301–314.

    Google Scholar 

  • Cross, W. F., C. V. Baxter, E. J. Rosi-Marshall, R. O. Hall Jr., T. A. Kennedy, K. C. Donner, H. A. Wellard Kelly, S. E. Z. Seegert, K. E. Behn & M. D. Yard, 2013. Food-web dynamics in a large river discontinuum. Ecological Monographs 83: 311–337.

    Google Scholar 

  • DeWalt, R. & K. Stewart, 1995. Life histories of stoneflies (Plecoptera) in the Rio Conejos of southern Colorado. The Great Basin Naturalist 55: 1–18.

    Google Scholar 

  • DiStefano, R. J., D. D. Magoulick, E. M. Imhoff & E. R. Larson, 2009. Imperiled crayfishes use hyporheic zone during seasonal drying of an intermittent stream. Journal of the North American Benthological Society 28: 142–152.

    Google Scholar 

  • Dobrin, M. & D. J. Giberson, 2003. Life history and production of mayflies, stoneflies, and caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a spring-fed stream in Prince Edward Island, Canada: evidence for population asynchrony in spring habitats? Canadian Journal of Zoology 81: 1083–1095.

    Google Scholar 

  • Dole-Olivier, M.-J., 2011. The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Marine and Freshwater Research 62: 1281–1302.

    Google Scholar 

  • Dole-Olivier, M.-J. & P. Marmonier, 1992. Patch distribution of interstitial communities: prevailing factors. Freshwater Biology 27: 177–191.

    Google Scholar 

  • Dole-Olivier, M.-J., P. Marmonier & J. L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37: 257–276.

    Google Scholar 

  • Efron, B. & R. J. Tibshirani, 1994. An Introduction to the Bootstrap. CRC Press, Boca Raton.

    Google Scholar 

  • Elliott, J. M., 1987. Temperature-induced changes in the life cycle of Leuctra nigra (Plecoptera: Leuctridae) from a Lake District stream. Freshwater Biology 18: 177–184.

    Google Scholar 

  • Finn, D. S. & N. L. Poff, 2008. Emergence and flight activity of alpine stream insects in two years with contrasting winter snowpack. Arctic, Antarctic, and Alpine Research 40: 638–646.

    Google Scholar 

  • Franken, R. J. M., R. G. Storey & D. D. Williams, 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444: 183–195.

    CAS  Google Scholar 

  • Hakenkamp, C. C. & M. A. Palmer, 2000. The ecology of hypoheic meiofauna. In Jones, J. B. & P. J. Mulholland (eds), Streams and Groundwaters. Academic Press, Cambridge: 307–336.

    Google Scholar 

  • Hancock, P. J., 2002. Human impacts on the stream-groundwater exchange zone. Environmental Management 29: 763–781.

    PubMed  Google Scholar 

  • Hancock, P. J., A. J. Boulton & W. F. Humphreys, 2005. Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeology Journal 13: 98–111.

    CAS  Google Scholar 

  • Harper, M. P. & B. L. Peckarsky, 2006. Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change. Ecological Applications 16: 612–621.

    PubMed  Google Scholar 

  • Hunt, G., 1999. The ecology of hyporheic invertebrates in Oklahoma and Arkansas streams. Doctoral Dissertation, Oklahoma State University.

  • Hunt, G. W. & E. H. Stanley, 2000. An evaluation of alternative procedures using the Bou-Rouch method for sampling hyporheic invertebrates. Canadian Journal of Fisheries and Aquatic Sciences 57: 1545–1550.

    Google Scholar 

  • Hunt, G. W. & E. H. Stanley, 2003. Environmental factors influencing the composition and distribution of the hyporheic fauna in Oklahoma streams: variation across ecoregions. Archiv für Hydrobiologie 158: 1–23.

    Google Scholar 

  • Huryn, A. D., 1996. An appraisal of the Allen paradox in a New Zealand trout stream. Limnology and Oceanography 41: 243–252.

    Google Scholar 

  • Jop, K. M. & K. W. Stewart, 1987. Annual stonefly (Plecoptera) production in a second order Oklahoma Ozark Stream. Journal of the North American Benthological Society 6: 26–34.

    Google Scholar 

  • Krno, I., 1997. Production and distribution of stoneflies (Plecoptera) of Slovakia. In Landolt, P. & M. Sartori (eds), Ephemeroptera and Plecoptera: Biology–Ecology–Systematics. MTL, Fribourg: 199–204.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Leasure, D. R., D. D. Magoulick & S. D. Longing, 2016. Natural flow regimes of the Ozark – Ouachita interior highlands region. River Research and Applications 32: 18–35.

    Google Scholar 

  • Mayden, R. L., 1985. Biogeography of Ouachita highland fishes. Southwestern Association of Naturalists 30: 195–211.

    Google Scholar 

  • Missouri Department of Natural Resources, 10 CSR 20-7, 2017. Rules of Department of Natural Resources Division.

  • Nakano, S. & M. Murakami, 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences 98: 166–170.

    CAS  Google Scholar 

  • Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.

    CAS  PubMed  Google Scholar 

  • Pennak, R. W. & J. V. Ward, 1986. Interstitial faunal communities of the hyporheic and adjacent groundwater biotopes of a Colorado mountain stream. Archiv für Hydrobiologie Monographische Beiträge, Supplementband 74: 356–396.

    Google Scholar 

  • Perán, A., J. Velasco & A. Millán, 1999. Life cycle and secondary production of Caenis luctuosa (Ephemeroptera) in a semiarid stream (Southeast Spain). Hydrobiologia 400: 187–194.

    Google Scholar 

  • Poulton, B. C. & K. W. Stewart, 1991. The stoneflies of the Ozark and Ouachita Mountains (Plecoptera). Memoirs of the American Entomological Society 38: 1–116.

    Google Scholar 

  • Puig, M. A., F. Sabater & J. Malo, 1990. Benthic and hyporheic faunas of mayflies and stoneflies in the Ter River Basin (NE-Spain). In Campbell, I. C. (ed.), Mayflies and Stoneflies. Kluwer, Dordrecht: 255–258.

    Google Scholar 

  • R Core Team, 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria. R Foundation for Statistical Computing, http://www.r-project.org.

  • Ratnasingham, S. & P. D. N. Hebert, 2007. BOLD: the Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7: 355–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds, S. K. & A. C. Benke, 2012. Chironomid production along a hyporheic gradient in contrasting stream types. Freshwater Science 31: 167–181.

    Google Scholar 

  • Robinson, H. W. & R. T. Allen, 1995. Only in Arkansas: A Study of the Endemic Plants and Animals of the State. University of Arkansas Press, Fayetteville.

    Google Scholar 

  • Salehin, M., A. I. Packman & M. Paradis, 2004. Hyporheic exchange with heterogeneous streambeds: laboratory experiments and modeling. Water Resources Research 40: W115141–W1151416.

    Google Scholar 

  • Sauer, C. O., 1920. The Geography of the Ozark Highland of Missouri. University of Chicago Press, Chicago.

    Google Scholar 

  • Sheldon, A. L. & M. L. Warren Jr., 2009. Filters and templates: stonefly (Plecoptera) richness in Ouachita Mountains streams, U.S.A. Freshwater Biology 54: 943–956.

    Google Scholar 

  • Skvarla, M. J., D. M. Fisher, K. E. Schnepp & A. P. G. Dowling, 2015. Terrestrial arthropods of Steel Creek, Buffalo National River, Arkansas. I. Select beetles (Coleoptera: Buprestidae, Carabidae, Cerambycidae, Curculionoidea excluding Scolytinae). Biodiversity Data Journal 3: 1–42.

    Google Scholar 

  • Smock, L. A., J. E. Gladden, J. L. Riekenberg, L. C. Smith & C. R. Black, 1992. Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments. Ecology 73: 876–886.

    Google Scholar 

  • Stanford, J. A. & A. R. Gaufin, 1974. Hyporheic communities of two Montana rivers. Science 185: 700–702.

    CAS  PubMed  Google Scholar 

  • Stead, T. K., J. M. Schmid-Araya & A. G. Hildrew, 2005. Secondary production of a stream metazoan community: does the meiofauna make a difference? Limnology and Oceanography 50: 398–403.

    Google Scholar 

  • Stewart, K. W. & B. P. Stark, 2002. Nymphs of North American Stonefly Genera (Plecoptera), 2nd edn. The Caddis Press, Columbus.

    Google Scholar 

  • Stubbington, R., P. J. Wood & I. Reid, 2011. Spatial variability in the hyporheic zone refugium of temporary streams. Aquatic Sciences 73: 499–511.

    Google Scholar 

  • Studholme, A. M., H. Hampel, D. S. Finn & R. F. Vázquez, 2017. Secondary production of caddisflies reflects environmental heterogeneity among tropical Andean streams. Hydrobiologia 797: 231–246.

    Google Scholar 

  • Sweeney, B. W. & R. L. Vannote, 1986. The relative importance of temperature and diet to larval development and adult size of the winter stonefly, Soyedina carolinensis (Plecoptera: Nemouridae). Freshwater Biology 16: 39–48.

    Google Scholar 

  • Sweeney, B. W., D. H. Funk, A. A. Camp, D. B. Buchwalter & J. K. Jackson, 2018. Why adult mayflies of Cloeon dipterum (Ephemeroptera: Baetidae) become smaller as temperature warms. Freshwater Science 37: 64–81.

    Google Scholar 

  • Vadher, A. N., C. Leigh, J. Millett, R. Stubbington & P. J. Wood, 2017. Vertical movements through subsurface stream sediments by benthic macroinvertebrates during experimental drying are influenced by sediment characteristics and species traits. Freshwater Biology 62: 1730–1740.

    Google Scholar 

  • Vander Vorste, R., F. Malard & T. Datry, 2016. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshwater Biology 61: 1276–1292.

    Google Scholar 

  • Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115: 667–695.

    Google Scholar 

  • Williams, D. D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York: 430–455.

    Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.

    Google Scholar 

  • Wright-Stow, A. E., K. J. Collier & B. J. Smith, 2006. Hyporheic production is substantially greater than benthic production for a common New Zealand caddisfly. Hydrobiologia 560: 295–310.

    Google Scholar 

  • Zollner, D., M. H. MacRoberts, B. R. MacRoberts & D. Ladd, 2005. Endemic vascular plants of the Interior Highlands, U.S.A. Sida 21: 1781–1791.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Graduate College and the Biology Department at Missouri State University (MSU), the Esther H. Scarlett Memorial Ecology Scholarship, the Milton Topping Memorial Fund and the Carl Morrow Scholarship in Natural Resources given by the Conservation Federation of Missouri in conjunction with the American Fisheries Society. We thank Andy Sheldon for encouraging us to pursue the interstitial “beasts” of the Ozarks and Bob and Barb Kipfer for enthusiastically allowing us to use their property in this pursuit. We also thank Ryan Langer, Parker Golliglee, Brian Grindstaff, Kelsey Hollien, Carajill Campbell, Claudio Meier, Cameron Cheri and Jeff Williams, whose help with field and lab work made this study possible. Many thanks to David Bowles for taxonomic expertise, Sean Maher for help with R code and two anonymous reviewers whose comments greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan C. Dorff.

Additional information

Handling editor: Checo Colón-Gaud

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The data that support the findings of this study are available from the corresponding author upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorff, N.C., Finn, D.S. Hyporheic secondary production and life history of a common Ozark stonefly. Hydrobiologia 847, 443–456 (2020). https://doi.org/10.1007/s10750-019-04105-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04105-z

Keywords

Navigation