Skip to main content

Advertisement

Log in

Anthropogenic habitat alternation significantly decreases α- and β-diversity of benthopelagic metacommunity in a large floodplain lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anthropogenic habitat alternation is one of the leading causes of biodiversity loss, especially in freshwater ecosystems. Understanding the mechanisms of how habitat degradation drives changes in spatial patterns of species assemblages is fundamental to conservation science. We conducted an empirical study to investigate the species richness (α-diversity) and community composition (β-diversity) of benthopelagic biota along the gradient of human modification in West Dongting Lake, China. The study site is a large floodplain lake that has been subjected to long-term intensive human use. For a better understanding of how β-diversity responds to human disturbance, we also distinguished between two patterns of β-diversity, i.e., turnover and nestedness. We found that both α- and β-diversity of the benthopelagic assemblage decreased along the intensity gradient of human modification, indicating the strong homogenizing effect of anthropogenic habitat alternation. Our results also suggested that multiple processes, including environmental filtering, dispersal limitation, and biological interactions, were important in shaping the benthopelagic assemblage structure because spatial turnover other than nestedness dominated the total β-diversity at both the lake and habitat level. These findings support that habitat restoration by removing artificial banks and channels and increasing the landscape naturalness would be the key for this highly modified floodplain lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Public Health Association, A.P.H.A., 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association Inc., Washington, DC.

    Google Scholar 

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Google Scholar 

  • Arantes, C. C., K. O. Winemiller, M. Petrere, L. Castello, L. L. Hess & C. E. Freitas, 2018. Relationships between forest cover and fish diversity in the amazon river floodplain. Journal of Applied Ecology 55: 386–395.

    Google Scholar 

  • Bartón, K. 2018. MuMIn: multi-model inference, R package version 1.42.1. http://cran.rproject.org/web/packages/MuMIn/MuMIn.pdf.

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology & Biogeography 19: 134–143.

    Google Scholar 

  • Baselga, A., 2013. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4: 552–557.

    Google Scholar 

  • Baselga, A. & C. D. L. Orme, 2012. Betapart: an R package for the study of β diversity. Methods in Ecology and Evolution 3: 808–812.

    Google Scholar 

  • Best, J., 2019. Anthropogenic stresses on the world’s big rivers. Nature Geoscience 12: 7–21.

    CAS  Google Scholar 

  • Bonn, A., D. Storch & K. J. Gaston, 2004. Structure of the species—energy relationship. Proceedings of the Royal Society B: Biological Sciences 271: 1685.

    PubMed  Google Scholar 

  • Britton, A. W., J. J. Day, C. J. Doble, B. P. Ngatunga, K. M. Kemp, C. Carbone & D. J. Murrell, 2017. Terrestrial-focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika. Biological Conservation 212: 120–129.

    Google Scholar 

  • Brown, J. J., K. E. Limburg, J. R. Waldman, K. Stephenson, E. P. Glenn, F. Juanes & A. Jordaan, 2013. Fish and hydropower on the U.S. Atlantic coast: failed fisheries policies from half-way technologies. Conservation Letter 6: 280–286.

    Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York: 488.

    Google Scholar 

  • Canning, A. D., 2018. Predicting New Zealand riverine fish reference assemblages. Peer J 6: e4890.

    PubMed  Google Scholar 

  • Castello, L. & M. N. Macedo, 2016. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.

    PubMed  Google Scholar 

  • Carvalho, J. C., P. Cardoso & P. Gomes, 2012. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography 21: 760–771.

    Google Scholar 

  • Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell & A. M. Ellison, 2014. Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45–67.

    Google Scholar 

  • Chase, J. M., 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328(5984): 1388–1391.

    CAS  PubMed  Google Scholar 

  • Cribarineto, F. & A. Zeileis, 2010. Beta regression in R. Journal of Statistical Software 34: 1–24.

    Google Scholar 

  • da Silva, P. G., J. M. Lobo, M. C. Hensen, F. Z. Vaz-de-Mello & M. I. Hernández, 2018. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Diversity and Distributions 24: 1277–1290.

    Google Scholar 

  • Dias, M. S., J. F. Cornu, T. Oberdorff, C. A. Lasso & P. A. Tedesco, 2013. Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 36: 683–689.

    Google Scholar 

  • Dray, S., G. Blanchet, D. Borcard, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi, & H. H. Wagner 2016. adespatial: Multivariate multiscale spatial analysis. R package version 0.0.3.

  • Dudgeon, D., 2010. Requiem for a river: extinctions, climate change and the last of the Yangtze. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 127–131.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Edge, C. B., M. J. Fortin, D. A. Jackson, D. Lawrie, L. Stanfield & N. Shrestha, 2017. Habitat alteration and habitat fragmentation differentially affect beta diversity of stream fish communities. Landscape Ecology 32: 647–662.

    Google Scholar 

  • Fang, J., Z. Wang, S. Zhao, Y. Li, Z. Tang, D. Yu, L. Ni, H. Liu, P. Xie, L. Da & Z. Li, 2006. Biodiversity changes in the lakes of the Central Yangtze. Frontiers in Ecology and the Environment 4: 369–377.

    Google Scholar 

  • Ferrari, S. L. P. & F. Cribari-Neto, 2004. Beta regression for modelling rates and proportions. Journal of Applied Statistics 31: 799–815.

    Google Scholar 

  • Fischer, J. & D. B. Lindenmayer, 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16(3): 265–280.

    Google Scholar 

  • Fu, C., J. Wu, J. Chen, Q. Wu & G. Lei, 2003. Freshwater fish biodiversity in the yangtze river basin of China: patterns, threats and conservation. Biodiversity and Conservation 12: 1649–1685.

    Google Scholar 

  • Fuller, M. R., M. W. Doyle & D. L. Strayer, 2015. Causes and consequences of habitat fragmentation in river networks. Annals of the New York Academy of Sciences 1355(1): 31–51.

    PubMed  Google Scholar 

  • Gianuca, A. T., S. A. Declerck, P. Lemmens & L. De Meester, 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology 98(2): 525–533.

    PubMed  Google Scholar 

  • Gavioli, A., M. Milardi, G. Castaldelli, E. A. Fano & J. Soininen, 2019. Diversity patterns of native and exotic fish species suggest homogenization processes, but partly fail to highlight extinction threats. Diversity and Distributions 25: 983–994.

    Google Scholar 

  • Grueber, C. E., S. Nakagawa, R. J. Laws & I. G. Jamieson, 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24(4): 699–711.

    CAS  PubMed  Google Scholar 

  • Guan, L., L. Wen, D. Feng, H. Zhang & G. Lei, 2014. Delayed flood recession in central yangtze floodplains can cause significant food shortages for wintering geese: results of inundation experiment. Environmental Management 54(6): 1331–1341.

    PubMed  Google Scholar 

  • Hanski, I., 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87: 209–219.

    Google Scholar 

  • Hsieh, T. C., K. H. Ma & A. Chao, 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451–1456.

    Google Scholar 

  • Iacarella, J. C., E. Adamczyk, D. Bowen, L. Chalifour, A. Eger, W. Heath, S. Helms, M. Hessing-Lewis, B. P. Hunt, A. MacInnis & M. I. O’connor, 2018. Anthropogenic disturbance homogenizes seagrass fish communities. Global Change Biology 24(5): 1904–1918.

    PubMed  Google Scholar 

  • Jamoneau, A., O. Chabrerie, D. Closset-Kopp & G. Decocq, 2012. Fragmentation alters beta-diversity patterns of habitat specialists within forest metacommunities. Ecography 35(2): 124–133.

    Google Scholar 

  • Kopp J. F., & G. D. McKee 1983. Methods for chemical analysis of water and wastewater. United States Environmental Protection Agency, Washington, DC. EPA-600/4-79-020.

  • Kuczynski, L., P. Legendre & G. Grenouillet, 2018. Concomitant impacts of climate change, fragmentation and non-native species have led to reorganization of fish communities since the 1980s. Global Ecology and Biogeography 27: 213–222.

    Google Scholar 

  • Langer, T. A., M. J. Cooper, L. S. Reisinger, A. J. Reisinger & D. G. Uzarski, 2018. Water depth and lake-wide water level fluctuation influence on alpha- and beta-diversity of coastal wetland fish communities. Journal of Great Lakes Research 44: 70–76.

    Google Scholar 

  • Legendre, P., 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23: 1324–1334.

    Google Scholar 

  • Legendre, P. & M. De Caceres, 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16: 951–963.

    PubMed  Google Scholar 

  • Liu, X. & H. Wang, 2018. Effects of loss of lateral hydrological connectivity on fish functional diversity. Conservation Biology 32: 1336–1345.

    PubMed  Google Scholar 

  • Lodge, D. M., A. Deines, F. Gherardi, D. C. Yeo, T. Arcella, A. K. Baldridge, W. L. Chadderton, J. L. Feder, C. A. Gantz, G. W. Howard, C. L. Jerde, B. W. Peters, J. A. Peters, L. W. Sargent, C. R. Turner, M. E. Wittmann & Y. Zeng, 2012. Global introductions of crayfishes: evaluating the impact of species invasions on ecosystem services. Annual Review of Ecology, Evolution, and Systematics 43: 449–472.

    Google Scholar 

  • Lu, C., Y. Jia, L. Jing, Q. Zeng, J. Lei, S. Zhang, G. Lei & L. Wen, 2018. Shifts in river-floodplain relationship reveal the impacts of river regulation: a case study of Dongting Lake in China. Journal of Hydrology 559: 932–941.

    Google Scholar 

  • McGill, B. J., M. Dornelas, N. J. Gotelli & A. E. Magurran, 2015. Fifteen forms of biodiversity trend in the Anthropocene. Trends in ecology & evolution 30: 104–113.

    Google Scholar 

  • Naus, C. J. & S. R. Adams, 2018. Fish nursery habitat function of the main channel, floodplain tributaries and oxbow lakes of a medium-sized river. Ecology of Freshwater Fish 27: 4–18.

    Google Scholar 

  • O’brien, R. M., 2007. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 41: 673–690.

    Google Scholar 

  • Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18–24.

    PubMed  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R, Legendre, P., McGlinn, D. Minchin, P., O’Hara, R. B., Simpson, G. L., Solymos P., Stevens, M. H., Szoecs, E., & H. Wagner, 2017. vegan: Community Ecology Package, R package version 2.4-3. https://CRAN.R-project.org/package=vegan

  • Opperman, J. J., G. E. Galloway, J. Fargione, J. F. Mount, B. D. Richter & S. Secchi, 2009. Sustainable floodplains through large-scale reconnection to rivers. Science 326: 1487–1488.

    CAS  PubMed  Google Scholar 

  • Ormerod, S. J., M. Dobson, A. G. Hildrew & C. Townsend, 2010. Multiple stressors in freshwater ecosystems. Freshwater Biology 55: 1–4.

    Google Scholar 

  • Olson, D. M. & E. Dinerstein, 1998. The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conservation Biology 12: 502–515.

    Google Scholar 

  • Pardini, R., A. de Arruda Bueno, T. A. Gardner, P. I. Prado & J. P. Metzger, 2010. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5: e13666.

    PubMed  PubMed Central  Google Scholar 

  • Pinter, N., 2005. One step forward, two steps back on US floodplains. Science 308: 207–208.

    CAS  PubMed  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737.

    CAS  Google Scholar 

  • Qian, H., R. E. Ricklefs & P. S. White, 2005. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters 8: 15–22.

    Google Scholar 

  • Qin, Y., H. Yan, J. Liu, J. Dong, J. Chen & X. Xiao, 2013. Impacts of ecological restoration projects on agricultural productivity in China. Journal of Geographical Sciences 23: 404–416.

    Google Scholar 

  • Richter, B.D., Postel, S., Revenga, C., Scudder, T., Lehner, B., Churchill, A. & M. Chow, 2010. Lost in development’s shadow: The downstream human consequences of dams. Water Alternatives 3: 14–42.

  • R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/.

  • Ropke, C. P., S. A. Amadio, K. O. Winemiller & J. Zuanon, 2016. Seasonal dynamics of the fish assemblage in a floodplain lake at the confluence of the Negro and Amazon Rivers. Journal of Fish Biology 89: 194–212.

    CAS  PubMed  Google Scholar 

  • Sæther, B. E., T. H. Ringsby & E. Røskaft, 1996. Life history variation, population processes and priorities in species conservation: towards a reunion of research paradigms. Oikos 77: 217–226.

    Google Scholar 

  • Smart, S. M., K. Thompson, R. H. Marrs, M. G. Le Duc, L. C. Maskell & L. G. Firbank, 2006. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings of the Royal Society of London B: Biological Sciences 273: 2659–2665.

    Google Scholar 

  • Socolar, J. B., J. J. Gilroy, W. E. Kunin & D. P. Edwards, 2016. How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution 31: 67–80.

    Google Scholar 

  • Stoffels, R. J., R. A. Rehwinkel, A. E. Price & W. F. Fagan, 2016. Dynamics of fish dispersal during river-floodplain connectivity and its implications for community assembly. Aquatic sciences 78: 355–365.

    CAS  Google Scholar 

  • Thompson, R. & C. Townsend, 2006. A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology 75: 476–484.

    PubMed  Google Scholar 

  • Thoms, M. C., 2003. Floodplain–river ecosystems: lateral connections and the implications of human interference. Geomorphology 56: 335–349.

    Google Scholar 

  • Tockner, K. & J. A. Stanford, 2002. Riverine flood plains: present state and future trends. Environmental conservation 29: 308–330.

    Google Scholar 

  • Turvey, S. T., R. L. Pitman, B. L. Taylor, J. Barlow, T. Akamatsu, L. A. Barrett, X. Zhao, R. R. Reeves, B. S. Stewart, K. Wang & Z. Wei, 2007. First human-caused extinction of a cetacean species? Biology letters 3: 537–540.

    PubMed  PubMed Central  Google Scholar 

  • Ulrich, W., M. Almeida-Neto & N. J. Gotelli, 2009. A consumer’s guide to nestedness analysis. Oikos 118: 3–17.

    Google Scholar 

  • van Puijenbroek, P. J., A. D. Buijse, M. H. Kraak & P. F. Verdonschot, 2018. Species and river specific effects of river fragmentation on European anadromous fish species. River Research and Applications 35: 68–77.

    Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555.

    PubMed  Google Scholar 

  • Wang, H. Z., X. Q. Liu & H. J. Wang, 2016. The Yangtze River-Floodplain: threats and rehabilitation. In fisheries resources, environment, and conservation in the Mississippi and Yangtze (Changjiang) River basins. American Fisheries Society, Symposium 84: 263–291.

    Google Scholar 

  • Winegardner, A. K., P. Legendre, B. E. Beisner & I. Gregory-Eaves, 2017. Diatom diversity patterns over the past c. 150 years across the conterminous United States of America: identifying mechanisms behind beta diversity. Global Ecology and Biogeography 26: 1303–1315.

    Google Scholar 

  • Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Google Scholar 

  • Wu, X. P., Y. N. Liang, H. Z. Wang, Z. C. Xie & S. Ouyang, 2000. Distribution and species diversity of freshwater mollusca of Lakes along mid-lower reaches of the Yangtze River. Journal of Lake Sciences 12: 111–118.

    Google Scholar 

  • Xie, C., X. Huang, H. Mu & W. Yin, 2017. Impacts of land-use changes on the lakes across the Yangtze floodplain in China. Environmental science & technology 51: 3669–3677.

    CAS  Google Scholar 

  • Xu, Y., W. Liu, J. Song, L. Yao & S. Gu, 2018. Dynamic monitoring of the Lake Area in the middle and lower reaches of the Yangtze River using MODIS images between 2000 and 2016. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11: 4690–4700.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the staff at the West Dongting Lake National Nature Reserve and Xiao Yayu, Zhao Changbin, and Guo Min for their help in data collection. This study was supported by the National Key Research and Development Program of China (Grant Number 2017YFC0405303), the Fundamental Research Funds for the Central Universities (Grant Numbers 2017ZY15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyu Wang or Guangchun Lei.

Additional information

Handling editor: Eric R. Larson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Tan, W., Wen, L. et al. Anthropogenic habitat alternation significantly decreases α- and β-diversity of benthopelagic metacommunity in a large floodplain lake. Hydrobiologia 847, 293–307 (2020). https://doi.org/10.1007/s10750-019-04091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04091-2

Keywords

Navigation