Skip to main content
Log in

Spatiotemporal structuring factors in the Chironomidae larvae (Insecta: Diptera) assemblages of an ultraoligotrophic lake from northern Patagonia Andean range: implications for paleolimnological interpretations

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Chironomid larvae assemblages and their seasonal variations were analyzed in several substrate types from Lake Moreno Oeste (Northern Patagonia) in order to understand the spatiotemporal patterns controlling its community. Information on the factors structuring chironomid communities is important to understand their ecological aspects and to improve the interpretation of paleolimnological records based on the analyses of subfossil assemblages. The chironomid community of Lake Moreno Oeste exhibited spatial heterogeneity, with four distinctive groups of taxa associated with different substrate types: (1) macrophyte Myriophyllum sp. (mainly represented by Parapsectrocladius escondido, Parachironomus sp. and Apedilum griseistriatum); (2) submerged riparian leaves (Ablabesmyia sp.); (3) deep sediment (Cryptochironomus sp. and Polypedilum sp.2.); and (4) littoral and sublittoral sediment (Riethia truncatocaudata and Djalmabatista). Along the sampling period, significant seasonal changes in chironomid composition were observed in substrates from sublittoral and littoral zones; however, a relatively stable community was recorded in the deeper zone. In Lake Moreno Oeste, the spatiotemporal structure of chironomid larvae assemblages is mainly driven by the substrate type and environmental factors associated with depth, such as organic matter content, sediment granulometric composition, and dissolved oxygen. The results presented here contribute to our understanding of chironomid ecology in North Patagonia and constitute an essential step forward to improve biomonitoring and paleolimnological studies in lacustrine environments in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, M. M., A. A. Mageed & M. Heikal, 2007. Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnologica 37: 155–169.

    Google Scholar 

  • Añón Suárez, D., 1991. Distribución del bentos del lago Escondido (Río Negro, Argentina) con especial énfasis en los quironómidos (Diptera: Chironomidae). Studies on Neotropical Fauna and Environment 26: 149–157.

    Google Scholar 

  • Añón Suárez, D., 1997. Estructura y dinámica de la taxocenosis Chironomidae (Diptera, Nematocera) de un lago Andino. Tesis doctoral, Universidad Nacional de La Plata, pp. 181.

  • Añón Suárez, D., 2002. Life history and secondary production of Ablabesmyia reissi (Diptera: Chironomidae) from Lake Escondido, Bariloche, Argentina. Journal of the North American Benthological Society 21: 414–429.

    Google Scholar 

  • Araneda, A., F. Cruces, L. Torres, S. Bertrand, N. Fagel, H. C. Treutler, L. Chirinos, R. Barra & R. Urrutia, 2007. Changes of sub-fossil chironomids assemblages associated with volcanic deposition in an Andean lake (38°S), Chile. Revista Chilena de Historia Natural 80: 141–156.

    Google Scholar 

  • Araneda, A., P. Jana, C. Ortega, F. Torrejón, S. Bertrand, P. Vargas, N. Fagel, D. Alvarez, A. Stehr & R. Urrutia, 2013. Changes in sub-fossil chironomid assemblages in two Northern Patagonian lake systems associated with the occurrence of historical fires. Journal of Limnology 50: 41–56.

    Google Scholar 

  • Arcagni, M., L. M. Campbell, M. A. Arribére, K. Kyser, K. Klassene, R. Casauxf, M. L. Miserendino & S. Ribeiro Guevara, 2013. Food web structure in a double-basin ultra-oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica 43: 131–142.

    CAS  Google Scholar 

  • Armitage, P. D., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae: Biology and Ecology of Non-Biting Midges. Chapman & Hall, London: 572.

    Google Scholar 

  • Árva, D., M. Tóth, H. Horváth, S. A. Nagy & A. Specziár, 2015. The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake. Hydrobiologia 742: 249–266.

    Google Scholar 

  • Árva, D., M. Tóth, A. Mozsár & A. Specziár, 2017. The roles of environment, site position, and seasonality in taxonomic and functional organization of chironomid assemblages in a heterogeneous wetland, Kis-Balaton (Hungary). Hydrobiologia 787: 353–373.

    Google Scholar 

  • Ashe, P., D. A. Murray & F. Reiss, 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie 23: 27–60.

    Google Scholar 

  • Barriga, J. P., M. A. Battini, M. García-Asorey, C. Carrea, P. J. Macchi & V. E. Cussac, 2012. Intraspecific variation in diet, growth, and morphology of landlocked Galaxias maculatus during its larval period: the role of food availability and predation risk. Hydrobiologia 679: 27–41.

    Google Scholar 

  • Beaty, S. R., K. Fortino & A. E. Hershey, 2006. Distribution and growth of benthic macroinvertebrates among different patch types of the littoral zones of two arctic lakes. Freshwater Biology 51: 2347–2361.

    CAS  Google Scholar 

  • Begon, M., Harper, J.L., Townsend, C.R., 1999. Ecología: individuos, poblaciones y comunidades. 3º edición, Ediciones Omega, pp. 1148.

  • Berg, M. B., 1995. Larval food and feeding behavior. In Armitage, P., P. S. Cranston & L. V. Pinder (eds), The Chironomidae: the biology and ecology of non-biting midges. Chapman and Hall, London: 136–168.

    Google Scholar 

  • Brown, B. L., 2007. Habitat heterogeneity and disturbance influence patterns of community temporal variability in a small temperate stream. Hydrobiologia 586: 93–106.

    Google Scholar 

  • Buria, L., S. J. Walde, M. Battini, P. J. Macchi, M. Alonso, D. E. Ruzzante & V. E. Cussac, 2007. Movement of a South American perch Percichthys trucha in a mountain Patagonian lake during spawning and prespawning periods. Journal of Fish Biology 70: 215–230.

    Google Scholar 

  • Cattaneo, A., 1983. Grazing on epiphytes. Limnology and Oceanography 28: 124–132.

    Google Scholar 

  • Chen, J., E. Zhang, S. J. Brooks, X. Huang, H. Wang, J. Liu & F. Chen, 2014. Relationships between chironomids and water depth in Bosten Lake, Xinjiang, northwest China. Journal of Paleolimnology 51: 313–323.

    CAS  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2001. Primer v5: user manual/tutorial. Primer-E, Plymouth Marine Laboratory.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216: 265–278.

    Google Scholar 

  • Coffman, W.B., Ferrington, L.C., 1996. Chironomidae. In: Merrit, W., Cummings, K.W. (eds) An introduction to the Aquatic Insects of North America. Kendall/Hunt Dubuque, Iowa: 2nd ed., 551–643.

  • Cranston, P.S., 2000 with updates. Electronic guide to the Chironomidae of Australian.

  • Da Silva, F. L., D. C. Moreir, S. S. Ruiz & G. L. Bochini, 2007. Avaliação da importância da unidade de conservação na preservação da diversidade de Chironomidae (Insecta: Diptera) no córrego Vargem Limpa, Bauru, Estado de Sáo Paulo. Acta Scientiarum Biological Sciences 29: 401–405.

    Google Scholar 

  • de Mendoza, G. & J. Catalan, 2010. Lake macroinvertebrates and the altitudinal environmental gradient in the Pyrenees. Hydrobiologia 648: 51–72.

    Google Scholar 

  • De Haas, E. M., C. Wagner, A. A. Koelmans, M. H. S. Kraak & W. Admiraal, 2006. Habitat selection by chironomid larvae: fast growth requires fast food. Journal of Animal Ecology 75: 148–155.

    PubMed  Google Scholar 

  • Díaz, M., A. Pedrozo, C. Reynolds & P. Temporetti, 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37: 17–27.

    Google Scholar 

  • Donato, M., J. Massaferro & S. J. Brooks, 2008. Chironomid (Chironomidae: Diptera) checklist from Nahuel Huapi National Park, Patagonia, Argentina. Revista de la Sociedad Entomologica Argentina 67: 163–170.

    Google Scholar 

  • Donato, M., A. Siri, J. Massaferro & S. J. Brooks, 2015. Apedilum griseistriatum comb. Nov., placement of Chironomus (Polypedilum) griseistriatum (Diptera, Chironomidae). Iheringia, Série Zoologia 105: 5–11.

    Google Scholar 

  • Eggermont, H., D. Kennedy, S. T. Hasiotis, D. Verschuren & A. Cohen, 2008. Distribution of living larval Chironomidae (Insecta: Diptera) along a depth transect at Kigoma Bay, Lake Tanganyika: implications for palaeoenvironmental reconstruction. African Entomology 16: 162–184.

    Google Scholar 

  • Engels, S., L. C. Cwynar, A. B. H. Rees & B. N. Shuman, 2012. Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models. Journal of Paleolimnology 48: 693–709.

    Google Scholar 

  • Epler, J.H., 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. EPA Region 4 and Human Health and Ecological Division. North Carolina Department of Environment and Natural Resources. Division of Water Quality, pp. 516.

  • García, P. E. & D. A. Añón Suárez, 2007. Community structure and phenology of chironomids (Insecta: Chironomidae) in a Patagonian Andean stream. Limnologica 37: 109–117.

    Google Scholar 

  • Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility ad comparability of results. Journal of Paleolimnology 25: 101–110.

    Google Scholar 

  • Hering, D., A. Haidekker, A. Schmidt-Kloiber, T. Barker, L. Buisson, W. Graf, G. Grenouillet, A. Lorenz, L. Sandin & S. Stendera, 2010. Monitoring the responses of freshwater ecosystems to climate change. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate change impacts on freshwater ecosystems. Wiley-Blackwell Publishing, New York: 84–118.

    Google Scholar 

  • Higuti, J. & A. M. Takeda, 2002. Spatial and temporal variation in densities of Chironomid larvae (diptera) in two lagoons and two tributaries of the upper Paraná River Floodplain, Brazil. Brazilian Journal of Biology 62: 807–818.

    CAS  Google Scholar 

  • Jamez, M. R., M. Weatherhead, C. Stanger & E. Graynoth, 1998. Macroinvertebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand—effects of habitat stability, wind exposure, and macrophytes. New Zealand Journal of Marine and Freshwater Research 32: 287–305.

    Google Scholar 

  • Kaisin, F.J., 1989. Dinámica, producción y balance energético del zoobentos en un embalse norpatagónico. Tesis Doctoral, Facultad de Ciencias Exactas y naturales. Universidad de Bs As.

  • Krumbein, W. C. & F. J. Pettijohn, 1938. Manual of Sedimentary Petrology. Appelton-Century-crofts Inc, New York: 549.

    Google Scholar 

  • Lamberti, G. A. & J. W. Moore, 1984. Aquatic insects as primary consumers. In Resh, V. H. & D. M. Rosemberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 164–165.

    Google Scholar 

  • Lancaster, J. & A. G. Hildrew, 1993. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12: 385–393.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, Amsterdam.

    Google Scholar 

  • Lencioni, V. & B. Rossaro, 2005. Microdistribution of chironomids (Diptera: Chironomidae) in Alpine streams: an autoecological perspective. Hydrobiologia 533: 61–76.

    Google Scholar 

  • Lindegaard, C., 1995. Classification of water-bodies and pollution. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Nonbiting Midges. Chapman and Hall, London: 384–404.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.

    Google Scholar 

  • Mauad, M., A. Siri & M. Donato, 2016. Does type of substratum affect Chironomid larvae assemblage composition? A study in a river catchment in Northern Patagonia, Argentina. Neotropical Entomology 46: 18–28.

    PubMed  Google Scholar 

  • Massaferro, J., 2009. Paleoecología: el uso de los quironómidos fósiles (Diptera: Chironomidae) en reconstrucciones paleoambientales durante el Cuaternario en la Patagonia. Revista de la Sociedad Entomológica Argentina 68: 209–217.

    Google Scholar 

  • Massaferro, J. & S. Brooks, 2002. Response of chironomids to late quaternary environmental change in the Taitao Peninsula, southern Chile. Journal of Quaternary Science 17: 101–111.

    Google Scholar 

  • Massaferro, J. & I. Larocque-Tobler, 2013. Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecological Indicators 24: 201–210.

    Google Scholar 

  • Massaferro, J., S. Ribeiro Guevara, A. Rizzo & M. A. Arribére, 2005. Short-term environmental changes in Lake Morenito (41ºS, 71ºW, Patagonia, Argentina) from the analysis of sub-fossil chironomids. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 23–30.

    Google Scholar 

  • Massaferro, J., C. Ortega, R. Fuentes & A. Araneda, 2013. Guía para la identificación de Tanytarsini subfosiles (Diptera: Chironomidae: Chironominae) de la Patagonia. Ameghiniana 50: 319–334.

    Google Scholar 

  • Massaferro, J., I. Larocque-Tobler, S. J. Brooks, M. Vandergoes, A. Dieffenbacher-Krall & P. Moreno, 2014. Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid based temperature model. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 214–224.

    Google Scholar 

  • Massaferro, J., A. Correa-Metrio, F. Montes de Oca & M. Mauad, 2017. Contrasting responses of lake ecosystems to environmental disturbance: a paleoecological perspective from northern Patagonia (Argentina). Hydrobiologia 816: 79–89.

    Google Scholar 

  • Miserendino, M. L., 2001. Macroinvertebrate assemblages in Andean Patagonian rivers and streams. Hydrobiology 444: 147–158.

    Google Scholar 

  • Misserendino, M. L. & L. A. Pizzolon, 2003. Distribution of macroinvertebrate assemblages in the Azul-Quemquemtreu river basin, Patagonia, Argentina. New Zealand Journal of Marina and Freshwater Research 37: 525–539.

    Google Scholar 

  • Miserendino, M. L., C. Brand & C. Y. Di Prinzio, 2008. Assesing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollution 194: 91–110.

    CAS  Google Scholar 

  • Montes de Oca, F., L. Motta, M. S. Plastani, C. Laprida, A. Lami & J. Massaferro, 2017. Reconstructing recent environmental changes using nonbiting midges (Diptera: Chironomidae) in two high mountain lakes from northern Patagonia, Argentina. Journal of Paleolimnology 59: 175–187.

    Google Scholar 

  • Paggi, A. C., 2001. Diptera: Chironomidae. In Fernández, H. R. & E. Domínguez (eds), Guía para la determinación de los artrópodos bentónicos sudamericanos. Facultad de Ciencias Naturales e Instituto M, Lillo: 167–193.

    Google Scholar 

  • Paggi, A. C. & A. Rodriguez Capítulo, 2002. Chironomid composition from drift and bottom samples in a regulated north-Patagonian river (Rio Limay, Argentina). Verhandlungen des Internationalen Verein Limnologie 28: 1229–1235.

    Google Scholar 

  • Papas, P., 2007. Effect of macrophytes on aquatic invertebrates—a literature review. Technical Report Series No. 158, Arthur Rylah Institute for Environmental Research, Melbourne.

  • Pinder, L. C. V., 1986. Biology of freshwater Chironomidae. Annual Review of Entomology 31: 1–23.

    Google Scholar 

  • Pressinate, S., G. Perbiche-Neves & A. Michiyo Takeda, 2016. The environmental heterogeneity of sediment determines Chironomidae (Insecta: Diptera) distribution in lotic and lentic habitats in a tropical floodplain. Insect Conservation and Diversity 9: 332–341.

    Google Scholar 

  • Puntí, T., M. Rieradevall & N. Prat, 2009. Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society 28: 247–265.

    Google Scholar 

  • Queimaliños, C. P., B. E. Modenutti & E. Balseiro, 1999. Symbiotic association of the ciliate Ophrydium naumanni with Chlorella causing a deep chlorophyll a maximum in an oligotrophic South Andes lake. Journal of Plankton Research 21: 167–178.

    Google Scholar 

  • Rees, A. B. H., L. C. Cwynar & P. S. Cranston, 2008. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. Journal of Paleolimnology 40: 1159–1178.

    Google Scholar 

  • Reuss, N. S., L. Hamerlik, G. Velle, A. Michelsen, O. Pedersen & K. P. Brodersen, 2014. Microhabitat influence on chironomid community structure and stable isotope signatures in West Greenland lakes. Hydrobiologia 730: 59–77.

    CAS  Google Scholar 

  • Ribeiro Guevara, S., A. Rizzo, R. Sánchez & M. A. Arribére, 2005. Heavy metal inputs in Northern Patagonia lakes from short sediment core analysis. Journal of Radioanalytical and Nuclear Chemistry 265: 481–493.

    Google Scholar 

  • Rieradevall, M. & N. Prat, 1999. Chironomidae from high mountain lakes in Spain and Portugal. In Hoffrichter, O. (ed.), Late 20th Century Research on Chironomidae: An Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen.

    Google Scholar 

  • Rieradevall, M. & S. J. Brooks, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25: 81–99.

    Google Scholar 

  • Rieradevall, M., N. Bonada & N. Prat, 1999. Substrate and depth preferences of macroinvertebrates along a transect in a Pyrenean high mountain lake (Lake Redó, NE Spain). Limnetica 17: 127–134.

    Google Scholar 

  • Rosenberg, D. M., 1992. Freshwater biomonitoring and chironomidae. Netherlands Journal of Aquatic Ecology 26: 101–122.

    Google Scholar 

  • Saether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.

    Google Scholar 

  • Sanseverino, A. M., J. L. Nessimian & A. L. H. Oliveira, 1998. A fauna de Chironomidae (Diptera) em diferentes biótopos aquáticos na Serra do Subaio (Teresópolis, RJ). Oecologia Brasilienses- Ecologia de insetos aquáticos 5: 253–263.

    Google Scholar 

  • Santos, C. M. & R. Henry, 2001. Composição, distribuição e abundância de Chironomidae (Diptera, Insecta) na Represa de Jurumirim (Rio Paranapanema-SP). Acta Limnologica Brasiliensia 13: 99–115.

    Google Scholar 

  • Siri, A., M. Donato, G. Orpella & J. Massaferro, 2011. Alotanypus vittigera (Edwards) comb. nov.: adult redescription, inmature description and a phylogenetic analysis of the genus (Diptera: Chironomidae: Tanypodinae). Zootaxa 2795: 46–64.

    Google Scholar 

  • Stoffels, R. J., K. R. Clarke & G. P. Closs, 2005. Spatial scale and benthic community organization in the littoral zones of large oligotrophic lakes: potential for cross-scale interactions. Freshwater Biology 50: 1131–1145.

    Google Scholar 

  • Tambelinni, M., C. T. Callil, I. Fantin-Cruz & P. Girard, 2013. Factors structuring the spatial distribution of Chironomidae larvae community in the floodplain of the Northern Pantanal, Brazil. Acta Limnologica Brasiliensia 25: 131–139.

    Google Scholar 

  • Tarkowska-Kukuryk, M., 2013. Periphytic algae as food source for grazing chironomids in a shallow phytoplankton dominated lake. Limnologica 43: 254–264.

    Google Scholar 

  • Tarkowska-Kukuryk, M., 2014. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect of macrophyte species and food resources. Limnology 15: 141–153.

    Google Scholar 

  • Tarrats, P., M. Cañedo-Argüelles, M. Rieradevall & N. Prat, 2017. Chironomid communities as indicators of local and global changes in an oligotrophic high mountain lake (Enol Lake, Northwestern Spain). Journal of Limnology 76: 355–365.

    Google Scholar 

  • Tarrats, P., M. Cañedo-Argüelles, M. Rieradevall & N. Prat, 2018. The influence of depth and macrophyte habitat on paleoecological studies using chironomids: Enol Lake (Spain) as a case study. Journal of Paleolimnology 60: 97–107.

    Google Scholar 

  • ter Braak, C. & P. Ŝmilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY: 352.

    Google Scholar 

  • Tickner, D., P. D. Armitage, M. A. Bickerton & K. A. Hall, 2000. Assessing stream quality using information on mesohabitat distribution and character. Aquatic Conservation: Marine and Freshwater Ecosystems 10: 170–196.

    Google Scholar 

  • Tokeshi, P., 1995. Species interactions and community structure. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London: 297–335.

    Google Scholar 

  • Tokeshi, M. & L. C. V. Pinder, 1985. Microhabitats of stream invertebrates on two submerged macrophytes with contrasting leaf morphology. Holarctic Ecology 8: 313–319.

    Google Scholar 

  • Tolonen, K. T., H. Hämäläinen, I. J. Holopainen & J. Karjalainen, 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv fur Hydrobiologie 152: 39–67.

    Google Scholar 

  • Trivinho-Strixino, S. & G. Strixino, 1991. Duas novas espécies de Nimbocera Reiss (Diptera, Chironomidae) do Estado de São Paulo, Brasil. Revista Brasileira de Entomologia 35: 173–178.

    Google Scholar 

  • Urrutia, R., A. Araneda, L. Torres, F. Cruces, C. Vivero, F. Torrejón, R. Barra, N. Fagel & B. Scharf, 2010. Late Holocene environmental changes inferred from diatom, chironomid, and pollen assemblages in an Andean lake in Central Chile, Lake Laja (36°S). Hydrobiologia 648: 207–225.

    CAS  Google Scholar 

  • van Hardenbroek, M., O. Heiri, M. F. Wilhelm & A. F. Lotter, 2011. How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, the Netherlands? Aquatic Sciences 73: 247–259.

    CAS  Google Scholar 

  • Walker, I. R., 2001. Midges: Chironomidae and related Diptera. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Changes Using Lakes Sediments, Vol. 4., Zoological Indicators Kluwer Academic Publishers, Dordrecht: 43–66.

    Google Scholar 

  • Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I, Larvae. Entomologica Scandinavica Suppement 19: 1–457.

  • Williams, N., M. Rieradevall, D. Añón Suárez, A. Rizzo, R. Daga, S. Ribeiro Guevara & M. A. Arribére, 2016. Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes. Quaternary research 86: 120–132.

    Google Scholar 

  • Williams, N., D. Añón Suárez, M. Rieradevall, A. Rizzo, R. Daga, M. A. Arribére & S. Ribeiro Guevara, 2019. Response of Chironomidae to environmental disturbances in a high mountain lake in Patagonia during the last millennium. Quaternary Research. https://doi.org/10.1017/qua.2019.5.

    Article  Google Scholar 

  • Xia, M., A. F. Talhelm & K. S. Pregitzer, 2018. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems 21: 1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, E., P. Langdon, H. Tang, R. Jones, X. Yang & J. Shen, 2011. Ecological influences affecting the distribution of larval chironomid communities in the lakes on Yunnan Plateau, SW China. Fundamental and Applied Limnology 179: 103–113.

    CAS  Google Scholar 

  • Zhang, E., Y. Cao, P. Langdon, Q. Wang, J. Shen & X. Yang, 2013. Within-lake variability of subfossil chironomid assemblage in a large, deep subtropical lake (Lugu lake, Southwest China). Journal of Limnology 72: 117–126.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Williams.

Additional information

Handling editor: Jasmine Saros

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2019_4089_MOESM1_ESM.pdf

Table I. Results of one-way ANOSIM with pairwise test among the main groups 20, M, SL and SED (Global R = 0,598; p > 0,001; N° of permutations: 999; N° of permuted statistics greater than or equal to Global R: 0) (PDF 121 kb)

10750_2019_4089_MOESM2_ESM.pdf

Table II. Main taxa in each assemblages group from Lake Moreno Oeste showed by SIMPER analysis, where 20 = Sediment at 20 m deep; SED = Sediment from littoral and sublittoral zones; M = Myriophyllum sp.; SL = Submerged leaves. (PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, N., Suárez, D.A., Juncos, R. et al. Spatiotemporal structuring factors in the Chironomidae larvae (Insecta: Diptera) assemblages of an ultraoligotrophic lake from northern Patagonia Andean range: implications for paleolimnological interpretations. Hydrobiologia 847, 267–291 (2020). https://doi.org/10.1007/s10750-019-04089-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04089-w

Keywords

Navigation