Caddisflies growth and size along an elevation/temperature gradient

  • Gláucia B. CogoEmail author
  • Jesús Martínez
  • Sandro Santos
  • Manuel A. S. Graça
Primary Research Paper


Temperature influences biological systems ranging from biochemical reactions to ecosystem processes. Some traits such as growth, development, and body size are related to temperature. Here, we ask the question whether the size of trichopteran changes along a ~ 1200 elevation gradient, as a predictor of temperature. Additionally, we measured in laboratory growth rates of the caddisfly Schizopelex festiva under three temperature regimes. Specimens of Hydropsyche ambigua, Hydropsyche siltalai, and Rhyacophila adjuncta were smaller at low than at high elevations. For each increase in 2 °C (downwards 400 m in the mountain), there was a 6.6 ± 2.3% decrease in size. Under laboratory conditions, specimens of Schizopelex festiva grew faster at 20 °C (34.7 ± 6.5 µg mg−1 day−1) than at 15 and 10 °C (18.9 ± 4.1 and 16.7 ± 2.3 µg mg−1 day−1, respectively). We conclude that caddisflies are sensitive to temperature along elevation gradients; we predict that ongoing global warming may affect aquatic insects body size and other related parameters such as survival and fitness.


Body size Hydropsyche Rhyacophila Schizopelex Temperature 



We are thankful to Olímpia Sobral for field work support.


This study was funded by the Portuguese Foundation for Science and Technology (FCT) through the strategic project UID/MAR/04292/2013 granted to MARE and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) through a scholarship granted to Gláucia Bolzan Cogo (PDSE Process no.: 88881.132244/2016-01).

Complaince with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2019_4082_MOESM1_ESM.docx (462 kb)
Supplementary material 1 (DOCX 461 kb)


  1. Arnett, A. E. & N. J. Gotelli, 1999. Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule. Evolution 53: 1180–1188.PubMedGoogle Scholar
  2. Ashton, K. G. & C. R. Feldman, 2003. Bergmann’s rule in non-avian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 7: 1151–1163.CrossRefGoogle Scholar
  3. Atkinson, D., 1994. Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research 25: 1–58.CrossRefGoogle Scholar
  4. Atkinson, D., 1995. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. Journal of Thermal Biology 20: 61–74.CrossRefGoogle Scholar
  5. Ayala, D., H. Caro-Riaño, J.-P. Dujardin, N. Rahola, F. Simard & D. Fontenille, 2011. Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. Infection, Genetics and Evolution 11: 940–947.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ayres, M., M. Jr. Ayres, D. L. Ayres & A. S. Santos, 2007. BioEstat 5.0: aplicações estatísticas nas áreas das ciências biológicas e médicas. ONG Mamirauá, Belém.Google Scholar
  7. Azevedo-Pereira, H. V. S., M. A. S. Graça & J. M. González, 2006. Life history of Lepidostoma hirtum in an Iberian stream and its role in organic matter processing. Hydrobiologia 559: 183–192.CrossRefGoogle Scholar
  8. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  9. Campbell, R. G., M. M. Wagner, G. J. Teegarden, C. A. Boudreau & E. G. Durbin, 2001. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Marine Ecology Progress Series 221: 161–183.CrossRefGoogle Scholar
  10. Chown, S. L. & C. J. Klok, 2003. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26: 445–455.CrossRefGoogle Scholar
  11. Cressa, C., V. Maldonado, S. Segnini & M. M. Chacón, 2008. Size variation with elevation in adults and larvae of some Venezuelan stoneflies (Insecta: Plecoptera: Perlidae). Aquatic Insects: International Journal of Freshwater Entomology 30: 127–134.CrossRefGoogle Scholar
  12. Dahlgaard, J., E. Hasson & V. Loeschcke, 2001. Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: plasticity or thermal adaptation? Evolution 55: 738–747.PubMedCrossRefGoogle Scholar
  13. Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.CrossRefGoogle Scholar
  14. David, J. R., H. Legout & B. Moreteau, 2006. Phenotypic plasticity of body size in a temperate population of Drosophila melanogaster: when the temperature-size rule does not apply. Journal of Genetics 85: 9–23.PubMedCrossRefGoogle Scholar
  15. Décamps, H., 1967. Écologie des trichoptères de la vallée d’Aure (Hautes-Pyrénées). Annales de Limnologie. 3: 399–577.CrossRefGoogle Scholar
  16. Fick, E. & R. J. Hijmans, 2017. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.CrossRefGoogle Scholar
  17. Forster, J. & A. G. Hirst, 2012. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Functional Ecology 26: 483–492.CrossRefGoogle Scholar
  18. Forster, J., A. G. Hirst & D. Atkinson, 2011a. How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing. Functional Ecology 25: 1024–1031.CrossRefGoogle Scholar
  19. Forster, J., A. G. Hirst & G. Woodward, 2011b. Growth and development rates have different thermal responses. The American Naturalist 178: 668–678.PubMedCrossRefGoogle Scholar
  20. Forster, J., A. G. Hirst & D. Atkinson, 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America 109: 19310–19314.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fu, D.-M., H.-M. He, C. Zou, H.-J. Xiao & F.-S. Xue, 2016. Life-history responses of the rice stem borer Chilo suppressalis to temperature change: breaking the temperature–size rule. Journal of Thermal Biology 61: 115–118.PubMedCrossRefGoogle Scholar
  22. Garske, J., S. M. H. Ismar & U. Sommer, 2015. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oecologia 177: 849–860.CrossRefGoogle Scholar
  23. Ghosh, S. M., N. D. Testa & A. W. Shingleton, 2013. Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences 280: 20130174.PubMedCrossRefGoogle Scholar
  24. Giberson, D. J. & D. M. Rosenberg, 1992. Effects of temperature, food quantity, and nymphal rearing density on life-history traits of a northern population of Hexagenia (Ephemeroptera:Ephemeridae). Journal of the North American Benthological Society 11: 181–193.CrossRefGoogle Scholar
  25. Gordo, O. & J. J. Sanz, 2005. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146: 484–495.PubMedCrossRefGoogle Scholar
  26. González, M. A. & F. Cobo, 2006. Los macroinvertebrados de las aguas dulces de Galicia. Hércules de Ediciones S. A, A Coruña.Google Scholar
  27. González, J. M. & M. A. S. Graça, 2003. Conversion of leaf litter to secondary production by a shredding caddisfly. Freshwater Biology 48: 1578–1592.CrossRefGoogle Scholar
  28. González, M. A. & J. Martínez, 2011. Checklist of the caddisflies of the Iberian Peninsula and Balearic Islands (Trichoptera). Zoosymposia 5: 115–135.Google Scholar
  29. González, M. A., L. S. W. Terra, D. Garcia de Jalon & F. Cobo, 1992. Lista faunística y bibliográfica de los Tricópteros (Trichoptera) de la Península Ibérica e Islas Baleares. Asociación Española de Limnología, Madrid.Google Scholar
  30. Graf, W., J. Murphy, J. Dahl, C. Zamora-Muñoz & M. J. López-Rodríguez, 2008. Distribution and ecological preferences of European freshwater organisms, Vol. 1. Pensoft Publishers, Sofia, Bulgaria, Trichoptera.Google Scholar
  31. Hodkinson, I. D., 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80: 489–513.PubMedCrossRefGoogle Scholar
  32. Hoefnagel, K. N. & W. Verberk, 2015. Is the temperature-size rule mediated by oxygen in aquatic ectotherms? Journal of Thermal Biology 54: 56–65.PubMedCrossRefGoogle Scholar
  33. Hoog, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.CrossRefGoogle Scholar
  34. Horne, C. R., A. G. Hirst & D. Atkinson, 2015. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters 18: 327–335.PubMedCrossRefGoogle Scholar
  35. Horne, C. R., A. G. Hirst & D. Atkinson, 2018. Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Functional Ecology 32: 948–957.CrossRefGoogle Scholar
  36. IPCC, 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland.Google Scholar
  37. James, F. C., 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 365–390.CrossRefGoogle Scholar
  38. Kiełbasa, A., A. Walczyńska, E. Fiałkowska, A. Pajdak-Stós & J. Kozłowski, 2014. Seasonal changes in the body size of two rotifer species living in activated sludge follow the temperature-size rule. Ecology and Evolution 4: 4678–4689.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kindlmann, P., A. F. G. Dixon & I. Dostálková, 2001. Role of ageing and temperature in shaping reaction norms and fecundity functions in insects. Journal of Evolutionary Biology 14: 835–840.CrossRefGoogle Scholar
  40. Kingsolver, J. G. & R. B. Huey, 2008. Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10: 251–268.Google Scholar
  41. Lapchin, L. & A. Neveu, 1979. Ecologies des principaux invertebres filtreusrs de la basse nivelle (Pyrenees-Atlantiques). II. Hydropsychidae (Trichoptera). Annales de Limnologie. 15: 139–153.CrossRefGoogle Scholar
  42. Li, C., X. Luo, X. Huang & B. Guet, 2009. Influences of temperature on development and survival, reproduction and growth of a calanoid copepod (Pseudodiaptomus dubia). The Scientific World Journal 9: 866–879.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Livingstone, D. M. & A. E. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. Journal of Paleolimnology 19: 181–198.CrossRefGoogle Scholar
  44. Malicky, H., 2017. Fauna Europaea: Trichoptera, Caddisflies. Fauna Europaea version 2017.
  45. Martín, L., 2017. Biodiversidad y conservación de los tricópteros (Insecta: Trichoptera) de la península ibérica y la Macaronesia. PhD thesis, Universidad de Santiago de Compostela, Santiago de Compostela.Google Scholar
  46. Martinez, J. M., 2014. Biodiversidad de los tricópteros (Insecta: Trichoptera) de la Península Ibérica: estudio faunístico y biogeográfico. PhD thesis, Universidad de Santiago de Compostela, Santiago de Compostela.Google Scholar
  47. Menéndez, R., A. González-Megías, P. Jay-Robert & R. Marquéz-Ferrando, 2014. Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography 23: 646–657.CrossRefGoogle Scholar
  48. Morrill, J. C., R. C. Bales & M. H. Conklin, 2005. Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering 131: 139–146.CrossRefGoogle Scholar
  49. Morse, J. C., 2018. Trichoptera world checklist. Accessed 14 March 2018.Google Scholar
  50. Nukazawa, K., R. Arai, S. Kazama & Y. Takemon, 2018. Projection of invertebrate populations in the headwater streams of a temperate catchment under a changing climate. Science of the Total Environment 642: 610–618.PubMedCrossRefGoogle Scholar
  51. Norry, F. M., O. A. Bubliy & V. Loeschcke, 2001. Developmental time, body size and wing loading in Drosophila buzzatii from lowland and highland populations in Argentina. Hereditas 135: 35–40.PubMedCrossRefGoogle Scholar
  52. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.PubMedCrossRefGoogle Scholar
  53. Pérez-Valencia, L. I. & G. Moya-Raygoza, 2015. Body size variation of Diaphorina citri (Hemiptera: Psyllidae) through an elevation gradient. Annals of the Entomological Society of America 108: 800–806.CrossRefGoogle Scholar
  54. Perry, A. L., P. J. Low, J. R. Ellis & J. D. Reynolds, 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915.PubMedCrossRefGoogle Scholar
  55. R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  56. Rijn, I. V., Y. Buba, J. DeLong, M. Kiflawi & J. Belmaker, 2017. Large but uneven reduction in fish size across species in relation to changing sea temperatures. Global Change Biology 23: 3667–3674.PubMedCrossRefGoogle Scholar
  57. Rollinson, N. & L. Rowe, 2018. Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration. Evolution 72: 977–988.PubMedCrossRefGoogle Scholar
  58. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig & J. A. Pounds, 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.PubMedCrossRefGoogle Scholar
  59. Sheldon, A. L., 2012. Possible climate-induced shift of stoneflies in a southern Appalachian catchment. Freshwater Science 33: 765–774.CrossRefGoogle Scholar
  60. Tang, J., H. He, C. Chen, S. Fu & F. Xue, 2017. Latitudinal cogradient variation of development time and growth rate and a negative latitudinal body weight cline in a widely distributed cabbage beetle. PLoS ONE 12: e0181030.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Terra, L. S. W., M. A. González & F. Cobo, 1997. Observations on flight periods of some caddisflies (Trichoptera: Rhyacophilidae, Limnephilidae) collected with light traps in Portugal. Proceedings of the International Symposium on Trichoptera 8: 453–458.Google Scholar
  62. Van Der Have, T. M. & G. De Jong, 1996. Adult size in ectotherms: temperature effects on growth and differentiation. Journal of Theoretical Biology 183: 329–340.CrossRefGoogle Scholar
  63. Van’t Land, J., P. Van Putten, B. Zwaan, A. Kamping & W. Van Delden, 1999. Latitudinal variation in wild populations of Drosophila melanogaster: heritabilities and reaction norms. Journal of Evolutionary Biology 12: 222–232.CrossRefGoogle Scholar
  64. Verberk, W. C. E. P., D. T. Bilton, P. Calosi & J. L. Spicer, 2011. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92: 1565–1572.PubMedCrossRefGoogle Scholar
  65. Walczyńska, A. & L. Sobczyk, 2017. The underestimated role of temperature-oxygen relationship in large-scale studies on size-to-temperature response. Ecology and Evolution 7: 7434–7441.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.PubMedCrossRefGoogle Scholar
  67. Webb, B. W., P. D. Clack & D. E. Walling, 2003. Water-air temperature relationships in a Devon river system and the role of flow. Hydrological Processes 17: 3069–3084.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ecology and Evolution Department, Center of Natural and Exact SciencesUniversidade Federal de Santa MariaRio Grande do SulBrazil
  2. 2.Departamento de Zooloxía, Xenética e Antropoloxía FísicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.MARE-Marine and Environmental Sciences Centre, Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations