Multiple stressors influence benthic macroinvertebrate communities in central Appalachian coalfield streams

  • Damion R. DroverEmail author
  • Stephen H. Schoenholtz
  • David J. Soucek
  • Carl E. Zipper
Primary Research Paper


Headwater streams impacted by surface coal mining in the central Appalachian region of the eastern USA have characteristics not shared by reference-quality streams. These include elevated salinity, often measured using specific conductance (SC) and cited as a primary stressor of benthic macroinvertebrate communities. The study objective was to assess influence by mining-origin stressors on benthic macroinvertebrate community structure in headwater streams. Stream habitat characteristics were measured and benthic macroinvertebrates were sampled from 12 central Appalachian streams, 9 of which were influenced by mining. Multiple benthic macroinvertebrate community metrics, including Ephemeroptera density, richness, and composition were correlated negatively with watershed mining extent and with SC. Predator density and scraper richness were correlated negatively with watershed mining, stream-water selenium, and SC. Clinger richness was correlated positively with stream substrate characteristics including large cobble-to-fines ratios and relative bed stability, and was correlated negatively with watershed mining and SC. Relationships of predator density and scraper richness with selenium concentrations, and relationships of clinger richness with stream substrate characteristics, are consistent with stress mechanisms revealed by prior studies. Improved understanding of how habitat features are altered by mining and influence community structure in headwater streams can inform water resource management in mining areas.


Salinity Fine sediment Selenium Quantitative sampling Habitat Mining 



This research was sponsored by the Appalachian Research Initiative for Environmental Science (ARIES). We thank Megan Underwood, Beth Boehme, Liz Sharp, Kyle Dost, Lindsey Nolan, Sam Hays, and Janelle Salapich for field and laboratory assistance. We also thank Tony Timpano who scouted the streams, installed the conductivity loggers, and provided advice throughout the project; and Patricia Donovan for GIS work that determined extent of mined areas within study-stream watersheds.

Supplementary material

10750_2019_4081_MOESM1_ESM.pdf (84 kb)
Supplementary material 1 (PDF 83 kb). Supplementary data tables describing major-ion water chemistry and containing the complete lists of candidate stressor variables and benthic macroinvertebrate metrics are available in a separate file


  1. Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, London.CrossRefGoogle Scholar
  2. APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, D.C.Google Scholar
  3. Arnold, M. C., T. T. Lindberg, Y. T. Liu, K. A. Porter, H. Hsu-Kim, D. E. Hinton & Di R. T. Giulio, 2014. Bioaccumulation and speciation of selenium in fish and insects collected from a mountaintop removal coal mining-impacted stream in West Virginia. Ecotoxicology 23: 929–938.CrossRefGoogle Scholar
  4. Baker, D. B., R. P. Richards, T. T. Loftus & J. W. Kramer, 2004. A new flashiness index: characteristics and applications to Midwestern rivers and streams. Journal of the American Water Resources Association 40: 503–522.CrossRefGoogle Scholar
  5. Besser, J. M., J. N. Huckins, E. E. Little & T. W. La Point, 1989. Distribution and bioaccumulation of selenium in aquatic microcosms. Environmental Pollution 62: 1–12.CrossRefGoogle Scholar
  6. Blair, T. C. & J. G. McPherson, 1999. Grain-size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research 69: 6–19.CrossRefGoogle Scholar
  7. Bo, T., S. Fenoglio, G. Malacarne, M. Pessino & F. Sgariboldi, 2007. Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica-Ecology and Management of Inland Waters 37: 186–192.CrossRefGoogle Scholar
  8. Boehme, E. A., C. E. Zipper, S. H. Schoenholtz, D. J. Soucek & A. J. Timpano, 2016. Temporal dynamics of benthic macroinvertebrate communities and their response to elevated specific conductance in Appalachian coalfield headwater streams. Ecological Indicators 64: 171–180.CrossRefGoogle Scholar
  9. Bonta, J. V., 2000. Impact of coal surface mining and reclamation on suspended sediment in three Ohio watersheds. Journal of the American Water Resources Association 36: 869–887.CrossRefGoogle Scholar
  10. Bruns, D. A., 2005. Macroinvertebrate response to land cover, habitat, and water chemistry in a mining-impacted river ecosystem: a GIS watershed analysis. Aquatic Sciences-Research Across Boundaries 67: 403–423.CrossRefGoogle Scholar
  11. Bryant, G., S. McPhilliamy & H. Childers, 2002. A survey of the water quality of streams in the primary region of mountaintop/valley fill coal mining. Mountaintop mining/valley fill programmatic environmental impact statement. Region 3, U.S. Environmental Protection Agency, Philadelphia, Pennsylvania.Google Scholar
  12. Bryce, S. A., G. A. Lomnicky & P. R. Kaufmann, 2010. Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. Journal of the North American Benthological Society 29: 657–672.CrossRefGoogle Scholar
  13. Buchwalter, D. B., J. J. Jenkins & L. R. Curtis, 2003. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies. Environmental Toxicology and Chemistry 22: 2806–2812.CrossRefGoogle Scholar
  14. Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer & C. J. Schulz, 2013. Salinisation of rivers: an urgent ecological issue. Environmental Pollution 173: 157–167.CrossRefGoogle Scholar
  15. Castillo, A. M., D. M. T. Sharpe, C. K. Ghalambor & L. F. De Leon, 2017. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. Hydrobiologia 807: 1–17.CrossRefGoogle Scholar
  16. Chambers, D. B. & T. Messinger, 2001. Benthic invertebrate communities and their responses to selected environmental factors in the Kanawha River Basin, West Virginia, Virginia, and North Carolina. Water-Resources Investigations Report 01-4021. U.S. Geological Survey, Charleston, West Virginia.Google Scholar
  17. Clark, E. V., C. E. Zipper, W. L. Daniels & M. J. Keefe, 2018. Appalachian coal mine spoil elemental release patterns and depletion. Applied Geochemistry 98: 109–120.CrossRefGoogle Scholar
  18. Conley, J. M., D. H. Funk & D. B. Buchwalter, 2009. Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environmental Science and Technology 43: 7952–7957.CrossRefGoogle Scholar
  19. Conley, J. M., D. H. Funk, N. J. Cariello & D. B. Buchwalter, 2011. Food rationing affects dietary selenium bioaccumulation and life cycle performance in the mayfly Centroptilum triangulifer. Ecotoxicology 20: 1840–1851.CrossRefGoogle Scholar
  20. Cormier, S. M., G. W. Suter, L. Zheng & G. J. Pond, 2013a. Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environmental Toxicology and Chemistry 32: 277–287.CrossRefGoogle Scholar
  21. Cormier, S. M., S. P. Wilkes & L. Zheng, 2013b. Relationship of land use and elevated ionic strength in Appalachian watersheds. Environmental Toxicology and Chemistry 32: 296–303.CrossRefGoogle Scholar
  22. Culp, J. M., F. J. Wrona & R. W. Davies, 1986. Response of stream benthos and drift to fine sediment deposition versus transport. Canadian Journal of Zoology 64: 1345–1351.CrossRefGoogle Scholar
  23. Daniels, W. L., C. E. Zipper, Z. W. Orndorff, J. Skousen, C. D. Barton, L. M. McDonald & M. A. Beck, 2016. Predicting TDS release from central Appalachian coal mine spoils. Environmental Pollution 216: 371–379.CrossRefGoogle Scholar
  24. Debruyn, A. M. & P. M. Chapman, 2007. Selenium toxicity to invertebrates: will proposed thresholds for toxicity to fish and birds also protect their prey? Environmental Science & Technology 41: 1766–1770.CrossRefGoogle Scholar
  25. Duan, X., Z. Wang & S. Tian, 2008. Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China 2: 122–128.CrossRefGoogle Scholar
  26. Dubois, M. & L. Hare, 2009. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types. Environmental Pollution 157: 772–777.CrossRefGoogle Scholar
  27. Erman, D. C. & N. A. Erman, 1984. The response of stream macroinvertebrates to substrate size and heterogeneity. Hydrobiologia 108: 75–82.CrossRefGoogle Scholar
  28. Evans, D. M., C. E. Zipper, E. T. Hester & S. H. Schoenholtz., 2015. Hydrologic effects of surface coal mining in Appalachia (U.S.). Journal of the American Water Resources Association 51: 1436–1452.CrossRefGoogle Scholar
  29. Fan, T. W. M., S. J. Teh, D. E. Hinton & R. M. Higashi, 2002. Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. Aquatic Toxicology 57: 65–84.CrossRefGoogle Scholar
  30. Fox, J. F., 2009. Identification of sediment sources in forested watersheds with surface coal mining disturbance using carbon and nitrogen isotopes. Journal of the American Water Resources Association 45: 1273–1289.CrossRefGoogle Scholar
  31. Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology: An Introduction for Ecologists. John Wiley and Sons, West Sussex.Google Scholar
  32. Gore, J. A., 2007. Discharge measurements and streamflow analysis. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Elsevier, San Diego: 51–77.CrossRefGoogle Scholar
  33. Green, J., M. Passmore & H. Childers, 2000. A survey of the condition of streams in the primary region of mountaintop mining/valley fill coal mining. Appendix D (A Survey of the Condition of Streams), Draft Programmatic Environmental Impact Statement on Mountaintop Mining/Valley Fills in Appalachia. Region 3, U.S. Environmental Protection Agency.Google Scholar
  34. Griffith, M. B., 2017. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: teleost fish, Crustacea, aquatic insects, and Mollusca. Environmental Toxicology and Chemistry 36: 576–600.CrossRefGoogle Scholar
  35. Griffith, M. B., S. B. Norton, L. C. Alexander, A. I. Pollard & S. D. LeDuc, 2012. The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. Science of the Total Environment 417: 1–12.CrossRefGoogle Scholar
  36. Hartman, K. J., M. D. Kaller, J. W. Howell & J. A. Sweka, 2005. How much do valley fills influence headwater streams? Hydrobiologia 532: 91–102.CrossRefGoogle Scholar
  37. Hassell, K. L., B. J. Kefford & D. Nugegoda, 2006. Sub-lethal and chronic salinity tolerances of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). The Journal of Experimental Biology 209: 4024–4032.CrossRefGoogle Scholar
  38. Howard, H. S., B. Berrang, M. Flexner, G. Pond & S. Call, 2001. Kentucky mountaintop mining benthic macroinvertebrate survey. U.S. Environmental Protection Agency, Science and Ecosystem Support Division, Ecological Assessment Branch, Athens, Georgia.Google Scholar
  39. Kaufmann, P. R., P. Levine, D. V. Peck, E. G. Robison & C. Seeliger, 1999. Quantifying physical habitat in wadeable streams. U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division.Google Scholar
  40. Kaufmann, P. R., J. M. Faustini, D. P. Larsen & M. A. Shirazi, 2008. A roughness-corrected index of relative bed stability for regional stream surveys. Geomorphology 99: 150–170.CrossRefGoogle Scholar
  41. Larsen, S., G. Pace & S. J. Ormerod, 2011. Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications 27: 257–267.CrossRefGoogle Scholar
  42. Lemly, A. D., 1999. Selenium transport and bioaccumulation in aquatic ecosystems: a proposal for water quality criteria based on hydrological units. Ecotoxicology and Environmental Safety 42: 150–156.CrossRefGoogle Scholar
  43. Lenat, D. R., D. L. Penrose & K. W. Eagleson, 1981. Variable effects of sediment addition on stream benthos. Hydrobiologia 79: 187–194.CrossRefGoogle Scholar
  44. Li, J., C. E. Zipper, P. F. Donovan, R. H. Wynne & A. J. Oliphant, 2015. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery. Environmental Monitoring and Assessment 187: 557.CrossRefGoogle Scholar
  45. Lindberg, T. T., E. S. Bernhardt, R. Bier, A. M. Helton, R. B. Merola, A. Vengosh & R. T. Di Giulio, 2011. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences 108: 20929–20934.CrossRefGoogle Scholar
  46. Mason, R. P., J. M. Laporte & S. Andres, 2000. Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology 38: 283–297.CrossRefGoogle Scholar
  47. McClelland, W. T. & M. A. Brusven, 1980. Effects of sedimentation on the behavior and distribution of riffle insects in a laboratory stream. Aquatic Insects 2: 161–169.CrossRefGoogle Scholar
  48. McDunnough, J., 1931. New species of north American ephemeroptera. The Canadian Entomologist, 63(4), 82–93.CrossRefGoogle Scholar
  49. Merriam, E. R., J. T. Petty, G. T. Merovich Jr., J. B. Fulton & M. P. Strager, 2011. Additive effects of mining and residential development on stream conditions in a central Appalachian watershed. Journal of the North American Benthological Society 30: 399–418.CrossRefGoogle Scholar
  50. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.Google Scholar
  51. Miller, A. J. & N. P. Zégre, 2014. Mountaintop removal mining and catchment hydrology. Water 6: 472–499.CrossRefGoogle Scholar
  52. Negley, T. L. & K. N. Eshleman, 2006. Comparison of stormflow responses of surface-mined and forested watersheds in the Appalachian Mountains, USA. Hydrological Processes 20: 3467–3483.CrossRefGoogle Scholar
  53. Nippgen, F., M. R. V. Ross, E. S. Bernhardt & B. L. McGlynn, 2017. Creating a more perennial problem? Mountaintop removal coal mining enhances and sustains saline baseflows of Appalachian watersheds. Environmental Science and Technology 51: 8324–8334.CrossRefGoogle Scholar
  54. Nowghani, F., S. Jonusaite, T. Watson-Leung, A. Donini & S. P. Kelly, 2017. Strategies of ionoregulation in the freshwater nymph of the mayfly Hexagenia rigida. Journal of Experimental Biology 220: 3997–4006.CrossRefGoogle Scholar
  55. Pericak, A. A., C. J. Thomas, D. A. Kroodsma, M. F. Wasson, M. R. V. Ross, N. E. Clinton, D. J. Campagna, Y. Franklin, E. S. Bernhardt & J. F. Amos, 2018. Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 13(7): e0197758.CrossRefGoogle Scholar
  56. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  57. Pollard, A. I. & L. L. Yuan, 2010. Assessing the consistency of response metrics of the invertebrate benthos: a comparison of trait-and identity-based measures. Freshwater Biology 55: 1420–1429.CrossRefGoogle Scholar
  58. Pond, G.J., 2004. Effects of surface mining and residential land use on headwater stream biotic integrity in the Eastern Kentucky Coalfield Region. Kentucky Department of Environmental Protection, Division of Water, Frankfort, Kentucky.Google Scholar
  59. Pond, G. J., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.CrossRefGoogle Scholar
  60. Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family-and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.CrossRefGoogle Scholar
  61. Pond, G. J., M. E. Passmore, N. D. Pointon, J. K. Felbinger, C. A. Walker, K. J. G. Krock, J. B. Fulton & W. L. Nash, 2014. Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in central Appalachia. Environmental Management 54: 919–933.CrossRefGoogle Scholar
  62. Presser, T. S. & I. Barnes, 1984. Selenium concentrations in waters tributary to and in the vicinity of the Kesterson National Wildlife Refuge, Fresno and Merced Counties, California (No. 84-4122). U.S. Geological Survey.Google Scholar
  63. Rabeni, C. F., K. E. Doisy & L. D. Zweig, 2005. Stream invertebrate community functional responses to deposited sediment. Aquatic Sciences-Research Across Boundaries 67: 395–402.CrossRefGoogle Scholar
  64. Ross, M. R. V., B. L. McGlynn & E. S. Bernhardt, 2016. Deep impact: effects of mountaintop mining on surface topography, bedrock structure, and downstream waters. Environmental Science and Technology 50: 2064–2074.CrossRefGoogle Scholar
  65. Sappington, K. G., 2002. Development of aquatic life criteria for selenium: a regulatory perspective on critical issues and research needs. Aquatic Toxicology 57: 101–113.CrossRefGoogle Scholar
  66. Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 8: 913–920.CrossRefGoogle Scholar
  67. Swift, M. C., 2002. Stream ecosystem response to, and recovery from, experimental exposure to selenium. Journal of Aquatic Ecosystem Stress and Recovery 9: 159–184.CrossRefGoogle Scholar
  68. Timpano, A. J., R. Vander Vorste, D. J. Soucek, K. Whitmore, C. E. Zipper & S. H. Schoenholtz, 2017. Stream ecosystem response to mining-induced salinization in central Appalachia. Final report to the Office of Surface Mining Reclamation and Enforcement (OSMRE Cooperative Agreement S15AC20028).Google Scholar
  69. Timpano, A. J., S. H. Schoenholtz, D. J. Soucek & C. E. Zipper, 2015. Salinity as a limiting factor for biological condition in mining-influenced central Appalachian headwater streams. Journal of the American Water Resources Association 51: 240–250.CrossRefGoogle Scholar
  70. Timpano, A. J., S. H. Schoenholtz, D. J. Soucek & C. E. Zipper, 2018a. Benthic macroinvertebrate community response to salinization in headwater streams in Appalachia USA over multiple years. Ecological Indicators 91: 645–656.CrossRefGoogle Scholar
  71. Timpano, A. J., C. E. Zipper, D. J. Soucek & S. H. Schoenholtz, 2018b. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams. Water Research 133: 1–18.CrossRefGoogle Scholar
  72. U.S. EPA, 2016. Aquatic life ambient water quality criterion for selenium in freshwater 2016 – fact sheet. Office of Water, U.S. Environmental Protection Agency, Washington, D.C., EPA-822-f-16-005, 2016.Google Scholar
  73. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  74. Vogel, S., 1994. Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press, Princeton.Google Scholar
  75. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.CrossRefGoogle Scholar
  76. Wallace, J. B., J. W. Grubaugh & M. R. Whiles, 1996. Biotic indices and stream ecosystem processes: results from an experimental study. Ecological Applications 6: 140–151.CrossRefGoogle Scholar
  77. Waters, T. F., 1995. Sediment in Streams: Sources, Biological Effects and Control. American Fisheries Society, Monograph 7, Bethesda, Maryland.Google Scholar
  78. Wayland, M. & R. Crosley, 2006. Selenium and other trace elements in aquatic insects in coal mine–affected streams in the Rocky Mountains of Alberta, Canada. Archives of Environmental Contamination and Toxicology 50: 511–522.CrossRefGoogle Scholar
  79. Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30: 377–392.CrossRefGoogle Scholar
  80. Whitmore, K. D., S. H. Schoenholtz, D. J. Soucek, W. A. Hopkins & C. E. Zipper, 2018. Selenium dynamics in headwater streams of the central Appalachian coalfield. Environmental Toxocology and Chemistry 37: 2714–2726.CrossRefGoogle Scholar
  81. Wichard, W., P. T. P. Tsui & H. Komnick, 1973. Effect of different salinities on the coniform chloride cells of mayfly larvae. Journal of Insect Physiology 19: 1825–1835.CrossRefGoogle Scholar
  82. Wiley, J. B., R. D. Evaldi, J. H. Eychaner & D. B. Chambers, 2001. Reconnaissance of stream geomorphology, low streamflow, and stream temperature in the mountaintop coal-mining region, southern West Virginia, 1999-2000. Water Resources Investigations Report. U.S. Geological Survey 4092:42.Google Scholar
  83. Wolman, M. G., 1954. A method of sampling coarse river-bed material. EOS, Transactions American Geophysical Union 35: 951–956.CrossRefGoogle Scholar
  84. Woods, A. J., J. M. Omernik, D. D. Brown & C. W. Kiilsgaard, 1996. Level III and IV ecoregions of Pennsylvania and the Blue Ridge Mountains, the Ridge and Valley, and Central Appalachians of Virginia, West Virginia, and Maryland. EPA/600/R-96/077. National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Corvallis, Oregon.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Virginia Water Resources Research Center, Virginia TechBlacksburgUSA
  2. 2.Illinois Natural History SurveyChampaignUSA
  3. 3.Crop and Soil Environmental Sciences, Virginia TechBlacksburgUSA

Personalised recommendations