Advertisement

Hydrobiologia

, Volume 846, Issue 1, pp 181–192 | Cite as

The abundance and larval performance of Aedes phoeniciae in supralittoral rock-pools

  • Sahar RosenfeldEmail author
  • Leon Blaustein
  • Jamie Kneitel
  • Claire Duchet
  • Rael Horwitz
  • Olga Rybak
  • Antonina Polevikov
  • Eyal Rahav
Primary Research Paper

Abstract

The mosquito Aedes phoeniciae is a potential disease vector that inhabits the coastal rock-pools of the Southeastern Mediterranean Sea. Our year-long study examined the abundance and distribution of Ae. phoeniciae in 49 rock-pools along HaBonim Beach Nature Reserve (Israeli coast) on a monthly basis (September 2016 to August 2017). Additionally, the physical, chemical, and biological characteristics of the rock-pools were measured. Our results showed a correlation between the abundance of Ae. phoeniciae and abiotic (salinity, pool volume, and pH) and biotic (bacterial, micro-phytoplankton, and chironomid abundance) characteristics. A complementary experiment was conducted to examine the role of bacteria and phytoplankton on Ae. phoeniciae larval performance by rearing larvae in seawater (SW) or seawater without microbes (FSW, 0.2-µm). Ae. phoeniciae grown in SW exhibited a high survivorship rate (~ 77%), while lower survivorship rate was measured in the FSW treatments (~ 45%). Furthermore, a higher number of adult females were found in the SW compared to FSW treatments (35 and 11, respectively), while the number of male adults remained similar. Our results suggest that Ae. phoeniciae larvae rely on the water characteristics and especially on the microbial communities that habitat the rock-pools. These results may enable improved mosquito control of Ae. phoeniciae along the Southeastern Mediterranean Sea.

Keywords

Aedes mariae complex Supralittoral rock-pools Israeli coast Coastal rock-pools 

Notes

Acknowledgements

We are most grateful to Valentina Rovelli, Nadav Pezaro, Luca Zoccarato, Martina Mulas, and Alvaro Israel for their help. This work was supported by an Israel Science Foundation Grant 891/2012 awarded to LB and by a Ministry of Environmental Protection Grant (Number 145–1–2) awarded to ER. JK was supported by the Fulbright Scholar Program and the United States-Israel Educational Foundation. This study is in partial fulfillment of an MSc thesis of Sahar Rosenfeld from the University of Haifa.

References

  1. Becker, N., D. Petric, M. Zgomba, C. Boase, M. Madon, C. Dahl & A. Kaiser, 2010. Mosquitoes and their control, Vol. 577. Springer, Heidelberg.  https://doi.org/10.1007/978-3-540-9287-4.CrossRefGoogle Scholar
  2. Bedhomme, S., P. Agnew, C. Sidobre & Y. Michalakis, 2003. Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. Journal of Evolutionary Biology 16: 721–730.CrossRefGoogle Scholar
  3. Blaustein, L. & J. M. Chase, 2007. Interactions between mosquito larvae and species that share the same trophic level. Annual Review of Entomology 52: 489–507.CrossRefGoogle Scholar
  4. Blaustein, L. & B. P. Kotler, 1993. Oviposition habitat selection by the mosquito, Culiseta longiareolata: effects of conspecifics, food and green toad tadpoles. Ecological Entomology 18: 104–108.CrossRefGoogle Scholar
  5. Blaustein, L. & S. S. Schwartz, 2001. Why study ecology in temporary pools? Israel Journal of Zoology 47: 303–312.CrossRefGoogle Scholar
  6. Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel & J. E. Cohen, 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia 138: 300–305.CrossRefGoogle Scholar
  7. Brendonck, L., M. Jocqué, K. Tuytens, B. V. Timms & B. Vanschoenwinkel, 2015. Hydrological stability drives both local and regional diversity patterns in rock pool metacommunities. Oikos 124: 741–749.CrossRefGoogle Scholar
  8. Campbell-Lendrum, D., L. Manga, M. Bagayoko & J. Sommerfeld, 2015. Climate change and vector-borne diseases: what are the implications for public health research and policy? Philosophical Transactions of the Royal Society B-Biological Sciences 370: 1–8.CrossRefGoogle Scholar
  9. Cheng, L., 1976. Marine Insects. North-Holland Publishing Company, Amsterdam: 581.Google Scholar
  10. Clements, A. N., 1999. The Biology of Mosquitoes: Sensory, Reception and Behaviour, Vol. 2. CABI, Wallingford.Google Scholar
  11. Coluzzi, M. & A. Sabatini, 1968. Morphological divergences and sterility barriers in the Aedes mariae complex (diptera, culicidae). Rivista Di Parassitologia 29: 49–70.PubMedGoogle Scholar
  12. Coluzzi, M., L. Bullini & A. P. Bianchi Bullini, 1971. Phosphoglucomutase polymorphism in Aedes phoeniciae Coluzzi & Sabatini of the Ae. mariae complex (Dipt., Culicidae). Bulletin of Entomological Research 61: 327–331.CrossRefGoogle Scholar
  13. Coumou, D. & S. Rahmstorf, 2012. A decade of weather extremes. Nature Climate Change 2: 491–496.CrossRefGoogle Scholar
  14. Dieng, H., C. Mwandawiro, M. Boots, R. Morales, T. Satho, N. Tuno, Y. Tsuda & M. Takagi, 2001. Leaf litter decay process and the growth performance of Aedes albopictus larvae (Diptera: Culicidae). Journal of Vector Ecology 27: 31–38.Google Scholar
  15. Duguma, D., M. G. Kaufman & A. B. Simas Domingos, 2017. Aquatic microfauna alter larval food resources and effect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae). Ecology and Evolution 7: 3507–3519.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eitam, A., L. Blaustein & M. Mangel, 2002. Effects of Anisops sardea (Hemiptera: Notonectidae) on oviposition habitat selection by mosquitoes and other dipterans and on community structure in artificial pools. Hydrobiologia 485: 183–189.CrossRefGoogle Scholar
  17. Goldreich, Y., 1995. Temporal variations of rainfall in Israel. Climate Research 5: 167–179.CrossRefGoogle Scholar
  18. Hassaine, K., S. Gourmala & G. Metge, 2001. Cinétique démographique des populations pré-imaginales d’Aedes mariae (Diptera: Culicidae) des côtes occidentales algériennes. Annales de Limnologie 37: 59–69.CrossRefGoogle Scholar
  19. Herbst, D. B., 2001. Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219.CrossRefGoogle Scholar
  20. Herms, W. B., 1928. The effect of different quantities of food during the larval period on the sex ratio and size of Lucilia sericata meigen and Theobaldia incidens (Thom.). Journal of Economic Entomology 21: 720–729.CrossRefGoogle Scholar
  21. Hidalgo, K., J. P. Dujardin, K. Mouline, R. K. Dabiré, D. Renault & F. Simard, 2015. Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa). Acta Tropica 143: 79–88.CrossRefGoogle Scholar
  22. Honório, N. A., P. H. Cabello, C. T. Codeço & R. Lourenço-de-oliveira, 2006. Preliminary data on the performance of Aedes aegypti and Aedes albopictus immatures developing in water-filled tires in Rio de Janeiro. Memórias do Instituto Oswaldo Cruz 101: 225–228.CrossRefGoogle Scholar
  23. Imam, H., G. S. Zarnigar & S. Aziz, 2014. The basic rules and methods of mosquito rearing (Aedes aegypti). Tropical Parasitology 4: 53–56.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jocque, M., B. Vanschoenwinkel & L. Brendonck, 2010. Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshwater Biology 55: 1587–1602.Google Scholar
  25. Juliano, S. A., 2009. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annual Review of Entomology 54: 37–56.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kauffman, E., A. Payne, M. A. Franke, M. A. Schmid, E. Harris & L. D. Kramer, 2017. Rearing of Culex spp. and Aedes spp. mosquitoes. Bio-Protocol 7(17): 1–25.CrossRefGoogle Scholar
  27. Khasnis, A. A. & M. D. Nettleman, 2005. Global warming and infectious disease. Archives of Medical Research 36: 689–696.CrossRefGoogle Scholar
  28. Kneitel, J. M., 2007. Intermediate-consumer identity and resources alter a food web with omnivory. Journal of Animal Ecology 76: 651–659.CrossRefGoogle Scholar
  29. Kolasa, J. & T. N. Romanuk, 2005. Assembly of unequal world of a rock pool metacommunity. In Holyoak, M., M. A. Leobold & R. D. Holt (eds), Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago: 212–232.Google Scholar
  30. Kress, N. & B. Herut, 2001. Spatial and seasonal evolution of dissolved oxygen and nutrients in the Southern Levantine Basin (Eastern Mediterranean Sea): chemical characterization of the water masses and inferences on the N:P ratios. Deep-Sea Research Part I: Oceanographic Research Papers 48: 2347–2372.CrossRefGoogle Scholar
  31. Langenheder, S. & H. Ragnarsson, 2007. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88: 2154–2161.CrossRefGoogle Scholar
  32. Lensky, N. G., Y. Dvorkin, V. Lyakhovsky, I. Gertman & I. Gavrieli, 2005. Water, salt, and energy balances of the Dead Sea. Water Resources Research 41: 1–13.CrossRefGoogle Scholar
  33. Lipkin, Y. & U. Safriel, 1971. Intertidal zonation on rocky shores at Mikhmoret (Mediterranean, Israel). The Journal of Ecology 59: 1–30.CrossRefGoogle Scholar
  34. Mastrantonio, V., D. Porretta, R. Bellini, G. Nascetti & S. Urbanelli, 2015. Molecular systematics and origin of the Mediterranean sea rock-pool mosquitoes of the Aedes mariae (Diptera: Culicidae) Complex. Annuals of the Entomological Society of America 108: 593–599.CrossRefGoogle Scholar
  35. McGregor, D. D., 1965. Physical ecology of some New Zealand supralittoral pools. Hydrobiologia 25: 277–284.CrossRefGoogle Scholar
  36. Naeem, S., 1988. Oecologia Predator-prey interactions and community structure: chironomids, mosquitoes and copepods. Oecologia 77: 202–209.CrossRefGoogle Scholar
  37. Ozer, T., I. Gertman, N. Kress, J. Silverman & B. Herut, 2016. Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Global Planetary Change 151: 60–67.CrossRefGoogle Scholar
  38. Porretta, D., D. Canestrelli, R. Bellini, G. Celli & S. Urbanelli, 2007. Improving insect pest management through population genetic data: a case study of the mosquito Ochlerotatus caspius (Pallas). Journal of Applied Ecology 44: 682–691.CrossRefGoogle Scholar
  39. Quinn, G. P. & M. J. Keough, 2002. Experimental design and Data Analysis for Biologists. Cambridge University Press, Cambridge.  https://doi.org/10.15713/ins.mmj.3.CrossRefGoogle Scholar
  40. Rahav, E., A. Paytan, E. Mescioglu, Y. Galletti, S. Rosenfeld, O. Raveh, C. Santinelli, T. Ho & B. Herut, 2018. Airborne microbes contribute to N2 fixation in surface water of the Northern Red Sea. Geophysical Research Letters.  https://doi.org/10.1029/2018GL077132.CrossRefGoogle Scholar
  41. Raveh, O., N. David, G. Rilov & E. Rahav, 2015. The temporal dynamics of coastal phytoplankton and bacterioplankton in the eastern mediterranean sea. PLoS One 10: 1–23.CrossRefGoogle Scholar
  42. Reiskind, M. H., K. L. Greene & L. P. Lounibos, 2009. Leaf species identity and combination affect performance and oviposition choice of two container mosquito species. Ecological Entomology 34: 447–456.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Reitz, S. R. & J. T. Trumble, 2002. Competitive displacment among insects and arachnids. Annuals of the Entomological Society of America 47: 435–465.Google Scholar
  44. Rilov, G., 2016. Multi-species collapses at the warm edge of a warming sea. Scientific Reports 6(36897): 1–14.Google Scholar
  45. Rioux, J. A., 1958. Les Culicidés du midi Méditerranéen. Encyclopedie Entomologiqu XXXV.Google Scholar
  46. Rosenfeld, S., D. Porretta, E. Rahav, V. Mastrantonio, C. Duchet & L. Blaustein, 2018. Scientific Note Molecular identification of Aedes phoeniciae (Diptera: Culicidae) in rockpools along the northern Israeli coast. Journal of Vector Ecology 43: 1–3.CrossRefGoogle Scholar
  47. Schönfeld, J., E. Alve, E. Geslin, F. Jorissen, S. Korsun, S. Spezzaferri, S. Abramovich, A. Almogi-Labin, E. A. du Chatelet, C. Barras, L. Bergamin, E. Bicchi, V. Bouchet, A. Cearreta, L. Di Bella, N. Dijkstra, S. T. Disaro, L. Ferraro, F. Frontalini, G. Gennari, E. Golikova, K. Haynert, S. Hess, K. Husum, V. Martins, M. McGann, S. Oron, E. Romano, S. M. Sousa & A. Tsujimoto, 2012. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative-towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology 94–95: 1–13.CrossRefGoogle Scholar
  48. Sergent, E. & E. Sergent, 1903. Observations sur les moustiques des environs d’Alger. Annales de I’Institut Pasteur 17: 60–67.Google Scholar
  49. Silberbush, A., I. Tsurim, Y. Margalith & L. Blaustein, 2014. Interactive effects of salinity and a predator on mosquito oviposition and larval performance. Oecologia 175: 565–575.CrossRefGoogle Scholar
  50. Silver, J. B., 2008. Mosquito Ecology: Field Sampling Methods, 2nd ed. Springer Science & Business Media, Dordrecht.CrossRefGoogle Scholar
  51. Sisma-Ventura, G., R. Yam, N. Kress & A. Shemesh, 2016. Water column distribution of stable isotopes and carbonate properties in the South-eastern Levantine basin (Eastern Mediterranean): vertical and temporal change. Journal of Marine Systems 158: 13–25.CrossRefGoogle Scholar
  52. Spencer, M., L. Blaustein & J. E. Cohen, 2002. Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology 83: 669–679.CrossRefGoogle Scholar
  53. Sushanth, V. R. & M. Rajashekhar, 2015. Effect of twelve species of marine phytoplankton on larval survival and development of the mosquito Culex quinquefasciatus. International Journal of Marine Science 5: 1–5.Google Scholar
  54. Theobald, F. V., 1907. A Monograph of the Culicidae, or Mosquitoes, Vol. 4. Longmans & Co, Harlow.Google Scholar
  55. Therriault, T. W. & J. Kolasa, 2001. Desiccation frequency reduces species diversity and predictability of community structure in coastal rock pools. Israel Journal of Zoology 47: 477–489.CrossRefGoogle Scholar
  56. Trexler, J. D., C. S. Apperson, L. Zurek, C. Gemeno, C. Schal, M. Kaufman, E. Walker, D. W. Watson & L. Wallace, 2003. Role of bacteria in mediating the oviposition responses of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 40: 841–848.CrossRefGoogle Scholar
  57. Urbanelli, S., D. Porretta, V. Mastrantonio, R. Bellini, G. Pieraccini, R. Romoli, G. Crasta & G. Nascetti, 2014. Hybridization, natural selection, and evolution of reproductive isolation: a 25-years survey of an artificial sympatric area between two mosquito sibling species of the Aedes mariae complex. Evolution 68: 3030–3038.CrossRefGoogle Scholar
  58. Wallace, J. B. & W. R. Merritt, 1980. Filter-feeding ecology of aquatic insects. Annual Reviews of Entomology 25: 103–132.CrossRefGoogle Scholar
  59. Wei, P., 2001. Akaike’s information criterion in generalized estimating equations. Biometrics 57: 120–125.CrossRefGoogle Scholar
  60. Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll-a in the presence of chlorophyll b and pheo-pigments. Limnology and Oceanography 39: 1985–1992.CrossRefGoogle Scholar
  61. Wilkerson, R. C., Y. M. Linton, D. M. Fonseca, T. R. Schultz, D. C. Price & D. A. Strickman, 2015. Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS One 10: 1–26.CrossRefGoogle Scholar
  62. Yavasoglu, S. I., F. M. Simsek & C. Ulger, 2016a. Distribution pattern and genetic structure of Aedes zammitii (Diptera: Culicidae) along the Mediterranean and Aegean coasts of Turkey. Journal of Vector Ecology 41: 151–159.CrossRefGoogle Scholar
  63. Yavasoglu, S. I., C. Yilmaz, C. Ulger & F. M. Simsek, 2016b. Molecular identification and genetic structure of Aedes phoeniciae (Diptera: Culicidae) in Northern Cyprus and Turkey. Biochemical Systmatics and Ecology 69: 6–14.CrossRefGoogle Scholar
  64. Yee, D. A. & S. A. Juliano, 2006. Consequences of detritus type in an aquatic microsystem: effects on water quality, micro-organisms and performance of the dominant consumer. Freshwater Biology 51: 448–459.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Evolutionary & Environmental Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
  2. 2.Israel Oceanographic and Limnological ResearchHaifaIsrael
  3. 3.Department of Biological SciencesCalifornia State UniversitySacramentoUSA

Personalised recommendations