Seasonality of the antibiotic resistance gene blaCTX-M in temperate Lake Maggiore

  • Ester M. Eckert
  • Andrea Di CesareEmail author
  • Lala-Sakina Malki
  • Jörg Villiger
  • Jakob Pernthaler
  • Cristiana Callieri
  • Roberto Bertoni
  • Gianluca Corno
Primary Research Paper


The beta lactamase gene blaCTX-M, responsible of the resistance to cephalosporins, has been detected in microbes from hospitals to open waters. We studied the seasonality and stability of blaCTX-M in Lake Maggiore over 3 years and the role of potential inputs of allochthonous bacteria and/or antibiotic pollution in promoting its occurrence. blaCTX-M was mainly present from January to July in the pelagic microbial community and the gene occurrence was significantly related to low water temperature. To evaluate its temporal stability in the bacterial community over a short period, we measured blaCTX-M daily over the course of 6 days. The gene was below the limit of quantification except for one sampling when its abundance peaked, suggesting a point contamination. The bacterial community of the lake in which blaCTX-M was detected suggests that at least two distinct bacterial populations contained the gene. The occurrence of known blaCTX-M containing genera and the occurrence of the gene, however, did not overlap. Furthermore, the experimental addition of cefotaxime to lake water incubations did not promote abundance of the gene. These data imply that blaCTX-M was present in the environmental microbial community. Increases of gene abundances were likely caused by environmental parameters other than antibiotic contamination.


Antibiotic resistance gene blaCTX-M Expanded spectrum cephalosporins Environment Lake Bacterial community 



This research is supported by the International Commission for the Protection of Italian-Swiss Waters (CIPAIS). We are indebted to Mario Contesini for his valuable work in the field and for filtering samples in laboratory. We thank Antonella Demarta and Federica Mauri for providing us with cefotaxime.

Supplementary material

10750_2019_4043_MOESM1_ESM.docx (115 kb)
Supplementary material 1 (DOCX 115 kb)


  1. Abgottspon, H., M. T. Nüesch-Inderbinen, K. Zurfluh, D. Althaus, H. Hächler & R. Stephan, 2014. Enterobacteriaceae with extended-spectrum- and pAmpC-type ß-lactamase-encoding genes isolated from freshwater fish from two lakes in Switzerland. Antimicrobial Agents and Chemotherapy 58: 2482–2484.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bertoni, R., C. Callieri, G. Corno, S. Rasconi, E. Caravati & M. Contesini, 2010. Long-term trends of epilimnetic and hypolimnetic bacteria and organic carbon in a deep holo-oligomictic lake. Hydrobiologia 644: 279–287.CrossRefGoogle Scholar
  3. Boyd, D. A., S. Tyler, S. Christianson, A. McGeer, M. P. Muller, B. M. Willey, E. Bryce, M. Gardam, P. Nordmann & M. R. Mulvey, 2004. Complete nucleotide sequence of a 92-Kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrobial Agents and Chemotherapy 48: 3758–3764.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bustin, S. A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl & G. L. Shipley, 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55: 611–622.CrossRefPubMedGoogle Scholar
  5. Cairns, J., M. Jalasvuori, V. Ojala, M. Brockhurst & T. Hiltunen, 2016. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation. Biology Letters 12: 20150953.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Calero-Cáceres, W., A. Melgarejo, M. Colomer-Lluch, C. Stoll, F. Lucena, J. Jofre & M. Muniesa, 2014. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environmental Science & Technology 48: 7602–7611.CrossRefGoogle Scholar
  7. Canton, R. & T. M. Coque, 2006. The CTX-M beta-lactamase pandemic. Current Opinion in Microbiology 9: 466–475.CrossRefPubMedGoogle Scholar
  8. Colomer-Lluch, M., W. Calero-Cáceres, S. Jebri, F. Hmaied, M. Muniesa & J. Jofre, 2014. Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population. Environment International 73: 167–175.CrossRefPubMedGoogle Scholar
  9. Czekalski, N., T. Berthold, S. Caucci, A. Egli & H. Bürgmann, 2012. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology 3: 106.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Czekalski, N., R. Sigdel, J. Birtel, B. Matthews & H. Bürgmann, 2015. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environment International 81: 45–55.CrossRefPubMedGoogle Scholar
  11. D’Andrea, M. M., F. Arena, L. Pallecchi & G. M. Rossolini, 2013. CTX-M-type β-lactamases: a successful story of antibiotic resistance. International Journal of Medical Microbiology 303: 305–317.CrossRefPubMedGoogle Scholar
  12. Devarajan, N., A. Laffite, N. D. Graham, M. Meijer, K. Prabakar, J. I. Mubedi, V. Elongo, P. T. Mpiana, B. W. Ibelings & W. Wildi, 2015. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environmental Science & Technology 49: 6528–6537.CrossRefGoogle Scholar
  13. Di Cesare, A., G. M. Luna, C. Vignaroli, S. Pasquaroli, S. Tota, P. Paroncini & F. Biavasco, 2013. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments. PLoS ONE 8: e62838.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Di Cesare, A., E. M. Eckert, A. Teruggi, D. Fontaneto, R. Bertoni, C. Callieri & G. Corno, 2015. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Molecular Ecology 24: 3888–3900.CrossRefPubMedGoogle Scholar
  15. Di Cesare, A., E. M. Eckert, S. D’Urso, R. Bertoni, D. C. Gillan, R. Wattiez & G. Corno, 2016. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Research 94: 208–214.CrossRefPubMedGoogle Scholar
  16. Di Cesare, A., E. M. Eckert, M. Rogora & G. Corno, 2017. Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community. Environmental Pollution 226: 473–478.CrossRefPubMedGoogle Scholar
  17. Ding, C. & J. He, 2010. Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology 87: 925–941.CrossRefPubMedGoogle Scholar
  18. Eckert, E. M., M. M. Salcher, T. Posch, B. Eugster & J. Pernthaler, 2012. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environmental Microbiology 14: 794–806.CrossRefPubMedGoogle Scholar
  19. Eckert, E. M., A. Di Cesare, M. Coci & G. Corno, 2018. Persistence of antibiotic resistance genes in large subalpine lakes: the role of anthropogenic pollution and ecological interactions. Hydrobiologia 824: 93–108.CrossRefGoogle Scholar
  20. Edgar, R. C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10: 996–998.CrossRefPubMedGoogle Scholar
  21. Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince & R. Knight, 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Geser, N., R. Stephan, B. M. Korczak, L. Beutin & H. Hächler, 2012. Molecular identification of extended-spectrum-β-lactamase genes from enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrobial Agents and Chemotherapy 56: 1609–1612.CrossRefPubMedPubMedCentralGoogle Scholar
  23. González, J. M., J. Iriberri, L. Egea & I. Barcina, 1992. Characterization of culturability, protistan grazing, and death of enteric bacteria in aquatic ecosystems. Applied and Environmental Microbiology 58: 998–1004.PubMedPubMedCentralGoogle Scholar
  24. Guo, Q., B. Ding, T. Jové, N. Stoesser, V. S. Cooper, M. Wang & Y. Doi, 2016. Characterization of a novel IncHI2 plasmid carrying tandem copies of blaCTX-M-2 in a fosA6-harboring Escherichia coli sequence type 410 strain. Antimicrobial Agents and Chemotherapy 60: 6742–6747.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Han, E. J. & D. S. Lee, 2017. Significance of metabolites in the environmental risk assessment of pharmaceuticals consumed by human. Science of The Total Environment 592: 600–607.CrossRefPubMedGoogle Scholar
  26. Herlemann, D. P., M. Labrenz, K. Jürgens, S. Bertilsson, J. J. Waniek & A. F. Andersson, 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal 5: 1571–1579.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hernández, J., J. Stedt, J. Bonnedahl, Y. Molin, M. Drobni, N. Calisto-Ulloa, C. Gomez-Fuentes, M. S. Astorga-España, D. González-Acuña & J. Waldenström, 2012. Human-associated extended-spectrum β-lactamase in the Antarctic. Applied and Environmental Microbiology 78: 2056–2058.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hiltunen, T., M. Virta & A.-L. Laine, 2017. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160039.CrossRefGoogle Scholar
  29. Hsu, J.-T., C.-Y. Chen, C.-W. Young, W.-L. Chao, M.-H. Li, Y.-H. Liu, C.-M. Lin & C. Ying, 2014. Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Journal of Hazardous Materials 277: 34–43.CrossRefPubMedGoogle Scholar
  30. Knapp, C. W., C. A. Engemann, M. L. Hanson, P. L. Keen, K. J. Hall & D. W. Graham, 2008. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environmental Science & Technology 42: 5348–5353.CrossRefGoogle Scholar
  31. Leisner, J. J., N. O. Jørgensen & M. Middelboe, 2016. Predation and selection for antibiotic resistance in natural environments. Evolutionary Applications 9: 427–434.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Levin-Reisman, I., I. Ronin, O. Gefen, I. Braniss, N. Shoresh & N. Q. Balaban, 2017. Antibiotic tolerance facilitates the evolution of resistance. Science 355: 826.CrossRefPubMedGoogle Scholar
  33. Liao, K., Y. Chen, M. Wang, P. Guo, Q. Yang, Y. Ni, Y. Yu, B. Hu, Z. Sun & W. Huang, 2017. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae causing intra-abdominal infections from 9 tertiary hospitals in China. Diagnostic Microbiology and Infectious Disease 87: 45–48.CrossRefPubMedGoogle Scholar
  34. Liu, B. & M. Pop, 2008. ARDB – antibiotic resistance genes database. Nucleic Acids Research 37: D443–D447.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu, X., R. Li, Z. Zheng, K. Chen, M. Xie, E. W.-C. Chan, S. Geng & S. Chen, 2017. Molecular characterization of Escherichia coli isolates carrying mcr-1, fosA3 and ESBL genes from food samples in China. Antimicrobial Agents and Chemotherapy:AAC. 00064-17.Google Scholar
  36. Ma, L., Y. Xia, B. Li, Y. Yang, L.-G. Li, J. M. Tiedje & T. Zhang, 2015. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environmental Science & Technology 50: 420–427.CrossRefGoogle Scholar
  37. Marti, E., J. Jofre & J. L. Balcazar, 2013. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 8: e78906.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Marti, E., B. Huerta, S. Rodríguez-Mozaz, D. Barceló, J. L. Balcázar & R. Marcé, 2016. Effects of subinhibitory ciprofloxacin concentrations on the abundance of qnrS and composition of bacterial communities from water supply reservoirs. Chemosphere 161: 470–474.CrossRefPubMedGoogle Scholar
  39. Neuenschwander, S. M., J. Pernthaler, T. Posch & M. M. Salcher, 2015. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environmental Microbiology 17: 781–795.CrossRefPubMedGoogle Scholar
  40. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, M. H. H. Stevens, M. J. Oksanen & M. Suggests, 2007. The vegan package. Community Ecology Package 10: 631–637.Google Scholar
  41. Quan, J., X. Li, Y. Chen, Y. Jiang, Z. Zhou, H. Zhang, L. Sun, Z. Ruan, Y. Feng & M. Akova, 2017. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. The Lancet Infectious Diseases 17: 400–410.CrossRefPubMedGoogle Scholar
  42. Santanirand, P., K. Malathum, T. Chadlane & W. Laolerd, 2011. Distribution of carbapenem resistant Acinetobacter baumannii and Pseudomonas aeruginosa and ESBL-producing organisms colonization among intensive care patients. In: BMC Proceedings, vol 5, Springer: P293.Google Scholar
  43. Silva, M. O. D., J. F. Blom, Y. Yankova, J. Villiger & J. Pernthaler, 2018. Priming of microbial microcystin degradation in biomass-fed gravity driven membrane filtration biofilms. Systematic and Applied Microbiology 41: 221–231.CrossRefPubMedGoogle Scholar
  44. Spencer, S. J., M. V. Tamminen, S. P. Preheim, M. T. Guo, A. W. Briggs, I. L. Brito, D. A. Weitz, L. K. Pitkänen, F. Vigneault, M. P. Virta & E. J. Alm, 2015. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. The ISME Journal 10: 427.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Suzuki, M. T., L. T. Taylor & E. F. DeLong, 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Applied and Environmental Microbiology 66: 4605–4614.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tacão, M., A. Correia & I. Henriques, 2012. Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of blaCTX-M-like genes. Applied and Environmental Microbiology 78: 4134–4140.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Van Boeckel, T. P., S. Gandra, A. Ashok, Q. Caudron, B. T. Grenfell, S. A. Levin & R. Laxminarayan, 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases 14: 742–750.CrossRefPubMedGoogle Scholar
  48. Varela, A. R., V. Manageiro, E. Ferreira, M. A. Guimaraes, P. M. da Costa, M. Canica & C. M. Manaia, 2015. Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. Journal of Global Antimicrobial Resistance 3: 286–289.CrossRefPubMedGoogle Scholar
  49. Wanjugi, P. & V. J. Harwood, 2013. The influence of predation and competition on the survival of commensal and pathogenic fecal bacteria in aquatic habitats. Environmental Microbiology 15: 517–526.CrossRefPubMedGoogle Scholar
  50. Zeder, M., S. Peter, T. Shabarova & J. Pernthaler, 2009. A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environmental Microbiology 11: 2676–2686.CrossRefPubMedGoogle Scholar
  51. Zurfluh, K., H. Hächler, M. Nüesch-Inderbinen & R. Stephan, 2013. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Applied and Environmental Microbiology 79: 3021–3026.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ester M. Eckert
    • 1
  • Andrea Di Cesare
    • 1
    Email author
  • Lala-Sakina Malki
    • 1
  • Jörg Villiger
    • 2
  • Jakob Pernthaler
    • 2
  • Cristiana Callieri
    • 1
  • Roberto Bertoni
    • 1
  • Gianluca Corno
    • 1
  1. 1.Microbial Ecology Group (MEG)National Research Council of Italy - Institute of Water Research (CNR-IRSA)VerbaniaItaly
  2. 2.Limnological Station, Department of Plant and Microbial BiologyUniversity of ZurichKilchbergSwitzerland

Personalised recommendations