Skip to main content
Log in

Species-specific fragmentation rate and colonization potential partly explain the successful spread of aquatic plants in lowland streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The vegetative spread potential of aquatic plant species is largely based on the quantity of dispersed plant fragments (propagule pressure) and their potential for regrowth and establishment, i.e., fragment regeneration and colonization. In streams, fragment dispersal is of particular significance as the exposure of plants to flow facilitates fragmentation and downstream drift of fragments. We conducted field investigations to quantify the relevance of fragment dispersal and the species-specific propagule pressure due to fragmentation in five small to medium-sized German streams. These field surveys were combined with determination of the potential for regeneration/colonization of fragments collected in the field indicated by relative root formation under standardized conditions. In general, the number of drifting fragments tended to increase with larger stream size. We documented species-specific differences in fragmentation rate, which contributed to weak correlations between the number of drift units and specific plant cover within four streams. The overall likelihood for root formation increased significantly with increasing fragment size and was highest for the invasive Elodea nuttallii (70% of fragments). We conclude that the fragment dispersal capacity in streams is highly species-specific and that propagule pressure alone cannot explain the successful spread of invasive species like Myriophyllum heterophyllum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, L. W. J., 1998. Dissipation and Movement of Sonar and Komeen Following Typical Applications for Control of Egeria densa in the Sacramento/San Joaquin Delta, and Production and Viability of E. densa Fragments Following Mechanical Harvesting (1997/1998). Environmental Impact Report. California Department of Boating and Waterways: 79.

  • Bakker, E. S., K. A. Wood, J. F. Pagès, G. F. (Ciska) Veen, M. J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36.

    Google Scholar 

  • Barrat-Segretain, M. H., 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio 123: 13–37.

    Google Scholar 

  • Barrat-Segretain, M. H. & G. Bornette, 2000. Regeneration and colonization abilities of aquatic plant fragments: effect of disturbance seasonality. Hydrobiologia 421: 31–39.

    Google Scholar 

  • Barrat-Segretain, M. H., G. Bornette & A. Hering-Vilas-Bôas, 1998. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquatic Botany 60: 201–211.

    Google Scholar 

  • Barrat-Segretain, M. H., C. P. Henry & G. Bornette, 1999. Regeneration and colonization of aquatic plant fragments in relation to the disturbance frequency of their habitats. Archiv für Hydrobiologie 145: 111–127.

    Google Scholar 

  • Barrat-Segretain, M.-H., A. Elger, P. Sagnes & S. Puijalon, 2002. Comparison of three life-history traits of invasive Elodea canadensis Michx. and Elodea nuttallii (Planch.). Aquatic Botany 74: 299–313.

    Google Scholar 

  • Bickel, T. O., 2017. Processes and factors that affect regeneration and establishment of the invasive aquatic plant Cabomba caroliniana. Hydrobiologia 788: 157–168.

    CAS  Google Scholar 

  • Bociag, K., A. Gałka, T. Łazarewicz & J. Szmeja, 2009. Mechanical strength of stems in aquatic macrophytes. Acta Societatis Botanicorum Poloniae 78: 181–187.

    Google Scholar 

  • Boedeltje, G., J. P. Bakker, R. M. Bekker, J. M. van Groenendael & M. Soesbergen, 2003. Plant dispersal in a lowland stream in relation to occurence and three specific life-history traits of the species in the species pool. Journal of Ecology 91: 855–866.

    Google Scholar 

  • Boedeltje, G., J. P. Bakker, A. Ten Brinke, J. M. van Groenendael & M. Soesbergen, 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology 92: 786–796.

    Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.

    CAS  Google Scholar 

  • Bowes, G., A. S. Holaday & W. T. Haller, 1979. Seasonal variation in the biomass, tuber density, and photosynthetic metabolism of Hydrilla in three Florida lakes. Journal of Aquatic Plant Management 17: 61–65.

    Google Scholar 

  • Cook, C. D. K., 1985. Range extensions of aquatic vascular plant species. Journal of Aquatic Plant Management 23: 1–6.

    Google Scholar 

  • Cook, C. D. K. & K. Urmi-König, 1985. A revision of the genus Elodea (Hydrocharitaceae). Aquatic Botany 21: 111–156.

    Google Scholar 

  • Cornacchia, L., D. van der Wal, J. van de Koppel, S. Puijalon, G. Wharton & T. J. Bouma, 2019. Flow-divergence feedbacks control propagule retention by in-stream vegetation: the importance of spatial patterns for facilitation. Aquatic Sciences 81: 17.

    Google Scholar 

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Google Scholar 

  • Fleming, J. P. & E. D. Dibble, 2014. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 22–37.

    Google Scholar 

  • Franklin, P., M. Dunbar & P. Whitehead, 2008. Flow controls on lowland river macrophytes: a review. Science of the Total Environment 400: 369–378.

    CAS  PubMed  Google Scholar 

  • Fritschler, N., A. Hussner & J. Busch, 2008. Regenerationsfähigkeit von indigenen und neophytischen Wasserpflanzen. Deutsche Gesellschaft für Limnologie (DGL)-Tagungsbericht 2007: 199–203.

    Google Scholar 

  • Grace, J. B., 1993. The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany 44: 159–180.

    Google Scholar 

  • Green, A. J., 2016. The importance of waterbirds as an overlooked pathway of invasion for alien species. Diversity and Distributions 22: 239–247.

    Google Scholar 

  • Heidbüchel, P. & A. Hussner, 2019. Fragment type and water depth determine the regeneration and colonization success of submerged aquatic macrophytes. Aquatic Sciences 81: 6.

    Google Scholar 

  • Heidbüchel, P., K. Kuntz & A. Hussner, 2016. Alien aquatic plants do not have higher fragmentation rates than native species: a field study from the River Erft. Aquatic Sciences 78: 767–777.

    Google Scholar 

  • Heidbüchel, P., P. Jahns & A. Hussner, 2019. Chlorophyll fluorometry sheds light on the role of desiccation resistance for vegetative overland dispersal of aquatic plants. Freshwater Biology 64: 1–15.

    Google Scholar 

  • Hussner, A., 2009. Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Research 49: 506–515.

    Google Scholar 

  • Hussner, A., D. Hofstra, P. Jahns & J. Clayton, 2015. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquatic Botany 120: 205–211.

    Google Scholar 

  • Hussner, A., T. Mettler-Altmann, A. P. M. Weber & K. Sand-Jensen, 2016. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users. Freshwater Biology 61: 1720–1732.

    CAS  Google Scholar 

  • Hussner, A., I. Stiers, M. J. J. M. Verhofstad, E. S. Bakker, B. M. C. Grutters, J. Haury, J. L. C. H. van Valkenburg, G. Brundu, J. Newman, J. S. Clayton, L. W. J. Anderson & D. Hofstra, 2017. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquatic Botany 136: 112–137.

    Google Scholar 

  • Jacobs, M. J. & H. J. MacIsaac, 2009. Modelling spread of the invasive macrophyte Cabomba caroliniana. Freshwater Biology 54: 296–305.

    Google Scholar 

  • Johansson, M. & C. Nilsson, 1993. Hydrochory, population dynamics and distribution of the clonal aquatic plant Ranunculus lingua. Journal of Ecology 81: 81–91.

    Google Scholar 

  • Kuntz, K., P. Heidbüchel & A. Hussner, 2014. Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments. Annales de Limnologie – International Journal of Limnology 50: 155–162.

    Google Scholar 

  • Langeland, K. A. & D. L. Sutton, 1980. Regrowth of Hydrilla from axillary buds. Journal of Aquatic Plant Management 18: 27–29.

    Google Scholar 

  • Liffen, T., A. M. Gurnell, M. T. O’Hare, N. Pollen-Bankhead & A. Simon, 2011. Biomechanical properties of the emergent aquatic macrophyte Sparganium erectum: implications for fine sediment retention in low energy rivers. Ecological Engineering 37: 1925–1931.

    Google Scholar 

  • Łoboda, A. M., R. J. Bialik, M. Karpiński & Ł. Przyborowski, 2019. Two simultaneously occurring Potamogeton species: similarities and differences in seasonal changes of biomechanical properties. Polish Journal of Environmental Studies 28: 1–16.

    Google Scholar 

  • Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20: 223–228.

    PubMed  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910.

    Google Scholar 

  • Miler, O., I. Albayrak, V. Nikora & M. O’Hare, 2012. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquatic Sciences 74: 31–44.

    Google Scholar 

  • Miler, O., I. Albayrak, V. Nikora & M. O’Hare, 2014. Biomechanical properties and morphological characteristics of lake and river plants: implications for adaptations to flow conditions. Aquatic Sciences 76: 465–481.

    Google Scholar 

  • Okada, M., B. J. Grewell & M. Jasieniuk, 2009. Clonal spread of invasive Ludwigia hexapetala and L. grandiflora in freshwater wetlands of California. Aquatic Botany 91: 123–129.

    Google Scholar 

  • Orchard, A., 1981. A revision of South American Myriophyllum (Haloragaceae) and its repercussions on some Australian and North American species. Brunonia 4: 27–65.

    Google Scholar 

  • Owens, C. S., J. D. Madsen, R. M. Smart & R. M. Steward, 2001. Dispersal of native and nonnative aquatic plant species in the San Marcos River, Texas. Journal of Aquatic Plant Management 39: 75–79.

    Google Scholar 

  • Pedersen, O., T. D. Colmer & K. Sand-Jensen, 2013. Underwater photosynthesis of submerged plants – recent advances and methods. Frontiers in Plant Science 4: 1–19.

    Google Scholar 

  • Pollen-Bankhead, N., R. E. Thomas, A. M. Gurnell, T. Liffen, A. Simon & M. T. O’Hare, 2011. Quantifying the potential for flow to remove the emergent aquatic macrophyte Sparganium erectum from the margins of low-energy rivers. Ecological Engineering 37: 1779–1788.

    Google Scholar 

  • Puijalon, S., J.-P. Léna, N. Rivière, J.-Y. Champagne, J.-C. Rostan & G. Bornette, 2008. Phenotypic plasticity in response to mechanical stress: hydrodynamic performance and fitness of four aquatic plant species. New Phytologist 177: 907–917.

    PubMed  Google Scholar 

  • Redekop, P., D. Hofstra & A. Hussner, 2016. Elodea canadensis shows a higher dispersal capacity via fragmentation than Egeria densa and Lagarosiphon major. Aquatic Botany 130: 45–49.

    Google Scholar 

  • Riede, W., 1920. Untersuchungen über Wasserpflanzen. Flora 114: 1–118.

    Google Scholar 

  • Riis, T., 2008. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341–351.

    Google Scholar 

  • Riis, T. & B. J. F. Biggs, 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography 48: 1488–1497.

    Google Scholar 

  • Riis, T. & K. Sand-Jensen, 2006. Dispersal of plant fragments in small streams. Freshwater Biology 51: 274–286.

    Google Scholar 

  • Riis, T., T. V. Madsen & R. S. H. Sennels, 2009. Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquatic Botany 90: 209–212.

    Google Scholar 

  • Riis, T., C. Lambertini, B. Olesen, J. S. Clayton, H. Brix & B. K. Sorrell, 2010. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation? Annals of Botany 106: 813–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riis, T., B. Olesen, J. S. Clayton, C. Lambertini, H. Brix & B. K. Sorrell, 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany 102: 56–64.

    Google Scholar 

  • Rothlisberger, J. D., W. L. Chadderton, J. McNulty & D. M. Lodge, 2010. Aquatic invasive species transport via trailered boats: what is being moved, who is moving it, and what can be done. Fisheries 35: 121–132.

    Google Scholar 

  • Sand-Jensen, K., 2003. Drag and reconfiguration of freshwater macrophytes. Freshwater Biology 48: 271–283.

    Google Scholar 

  • Sand-Jensen, K., 2008. Drag forces on common plant species in temperate streams: consequences of morphology, velocity and biomass. Hydrobiologia 610: 307–319.

    Google Scholar 

  • Sand-Jensen, K. & C. L. Møller, 2014. Reduced root anchorage of freshwater plants in sandy sediments enriched with fine organic matter. Freshwater Biology 59: 427–437.

    Google Scholar 

  • Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.

    Google Scholar 

  • Sarneel, J. M., 2013. The dispersal capacity of vegetative propagules of riparian fen species. Hydrobiologia 710: 219–225.

    Google Scholar 

  • Sastroutomo, S. S., 1981. Turion formation, dormancy and germination of curly pondweed, Potamogeton crispus L. Aquatic Botany 10: 161–173.

    Google Scholar 

  • Schutten, J., J. Dainty & A. J. Davy, 2005. Root anchorage and its significance for submerged plants in shallow lakes. Journal of Ecology 93: 556–571.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Arnold, London.

    Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40: 81–102.

    Google Scholar 

  • Smart, R. M. & J. W. Barko, 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany 21: 251–263.

    Google Scholar 

  • Thouvenot, L., J. Haury & G. Thiébaut, 2013. A success story: water primroses, aquatic plant pests. Aquatic Conservation: Marine and Freshwater Ecosystems 803: 790–803.

    Google Scholar 

  • Titus, J. E. & D. T. Hoover, 1991. Toward predicting reproductive success in submerged freshwater angiosperms. Aquatic Botany 41: 111–136.

    Google Scholar 

  • Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquatic Ecology 46: 443–449.

    Google Scholar 

  • Van Wijk, R. J., 1989. Ecological studies on Potamogeton pectinatus L. III. Reproductive strategies and germination ecology. Aquatic Botany 33: 271–299.

    Google Scholar 

  • Vári, Á., 2013. Colonisation by fragments in six common aquatic macrophyte species. Fundamental and Applied Limnology 183: 15–26.

    Google Scholar 

  • Wang, M.-Z., Z.-Y. Liu, F.-L. Luo, G.-C. Lei & H.-L. Li, 2016. Do amplitudes of water level fluctuations affect the growth and community structure of submerged macrophytes? PLoS ONE 11: e0146528.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y.-J., H. Müller-Schärer, M. van Kleunen, A.-M. Cai, P. Zhang, R. Yan, B.-C. Dong & F.-H. Yu, 2017. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytologist 216: 1072–1078.

    PubMed  Google Scholar 

  • Xie, D., D. Yu, L. F. Yu & C. H. Liu, 2010. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655: 37–47.

    Google Scholar 

  • Xie, D., Y. Hu, R. P. Mormul, H. Ruan, Y. Feng & M. Zhang, 2018. Fragment type and water nutrient interact and affect the survival and establishment of Myriophyllum aquaticum. Hydrobiologia 815: 205–213.

    Google Scholar 

  • You, W., D. Yu, C. Liu, D. Xie & W. Xiong, 2013. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 718: 27–39.

    Google Scholar 

  • Yu, H., N. Shen, D. Yu & C. Liu, 2019. Clonal integration increases growth performance and expansion of Eichhornia crassipes in littoral zones: a simulation study. Environmental and Experimental Botany 159: 13–22.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Bundesstiftung Umwelt (DBU, Grant Numbers 20016/450, PH and 20016/464, NS). We thank the Editor and two Anonymous Reviewers for comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Heidbüchel.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidbüchel, P., Sachs, M., Stanik, N. et al. Species-specific fragmentation rate and colonization potential partly explain the successful spread of aquatic plants in lowland streams. Hydrobiologia 843, 107–123 (2019). https://doi.org/10.1007/s10750-019-04041-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04041-y

Keywords

Navigation