Skip to main content

Advertisement

Log in

Warming interacts with inundation timing to influence the species composition of California vernal pool communities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Climate change has been associated with alterations in temperature and precipitation regimes. Increased temperatures can change the structure and function of aquatic communities through both biotic and abiotic interactions. Many warming experiments have been conducted in permanent freshwater systems, but few in temporary freshwater systems that are dependent on precipitation patterns. Temporary aquatic communities are influenced by hydro-regime characteristics such as the hydroperiod length, magnitude, frequency, and timing of inundation, which may interact with temperature changes. Here, we used mesocosms to test for the effects of warming and inundation timing on the community composition of California vernal pools. California vernal pools are temporary wetlands, which provide habitat for many endemic and endangered species during the aquatic phase. Total species abundance was higher in both warm and late inundation treatments, while higher species richness levels in late treatments were due to the rapid emergence and colonization of species compared to early treatments. Heating increased the abundance of ubiquitous passive and active dispersers, including mosquitos, but decreased the abundance of vernal pool endemic passive dispersers. We also found that significant interactive effects between warming and inundation timing led to differences in community composition. These findings suggest that vernal pool endemic passive disperser species may decline due to increased temperatures and later inundation; however, the extent of such risk will likely be influenced by species-specific life-history traits such as bet-hedging strategies. Conservation efforts should work to identify the species most at risk to a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acuña, V., M. Hunter & A. Ruhí, 2017. Managing temporary streams and rivers as unique rather than second-class ecosystems. Biological Conservation 211: 12–19.

    Google Scholar 

  • Batzer, D. P., 2013. The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33: 1–15.

    Google Scholar 

  • Blaustein, L., 1999. Oviposition Site Selection in Response to Risk of Predation: Evidence from Aquatic Habitats and Consequences for Population Dynamics and Community Structure. In Wasser, S. P. (ed), Evolutionary Theory and Processes: Modern Perspectives. Kluwer, Dordrecht: 441–456.

    Google Scholar 

  • Blaustein, L. & J. M. Chase, 2007. Interactions between mosquito larvae and species that share the same trophic level. Annual Review of Entomology 52: 489–507.

    CAS  PubMed  Google Scholar 

  • Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel & J. E. Cohen, 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia 138: 300–305.

    PubMed  Google Scholar 

  • Bliss, S. A. & P. H. Zedler, 1998. The germination process in vernal pools: similarity to environmental conditions and effects on community structure. Oecologia 113: 67–73.

    Google Scholar 

  • Boix, D., J. Sala, X. D. Quintana & R. Moreno-Amich, 2004. Succession of the animal community in a Mediterranean temporary pond. Journal of the North American Benthological Society 23: 29–49.

    Google Scholar 

  • Boix, D., J. Kneitel, B. J. Robson, C. Duchet, L. Zúñiga, J. Day, S. Gascon, J. Sala, X. D. Quintana & L. Blaustein, 2016. Invertebrates of freshwater temporary ponds in Mediterranean climates. In Batzer, D. & D. Boix (eds), Invertebrates in Freshwater Wetlands. An International Perspective on their Ecology. Springer, New York: 141–189.

    Google Scholar 

  • Bonan, G. B. & S. C. Doney, 2018. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359: p.eaam8328.

    Google Scholar 

  • Brendonck, L. & L. Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.

    Google Scholar 

  • Brendonck, L., E. Michels, L. De Meester & B. Riddoch, 2002. Temporary pools are not ‘enemy-free’. Hydrobiologia 486: 147–159.

    Google Scholar 

  • Brendonck, L., M. Jocqué, K. Tuytens, B. V. Timms & B. Vanschoenwinkel, 2015. Hydrological stability drives both local and regional diversity patterns in rock pool metacommunities. Oikos 124: 741–749.

    Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Google Scholar 

  • Calhoun, A. J., D. M. Mushet, K. P. Bell, D. Boix, J. A. Fitzsimons & F. Isselin-Nondedeu, 2017. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation 211: 3–11.

    Google Scholar 

  • California Department of Water Resources, 2015. California climate science and data. [available on internet at http://www.water.ca.gov/climatechange/docs/CA_Climate_Science_and_Data_Final_Release_June_2015.pdf].

  • Chase, J. M. & T. M. Knight, 2003. Drought-induced mosquito outbreaks in wetlands. Ecology Letters 6: 1017–1024.

    Google Scholar 

  • Chesson, P. L., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology, Evolution, and Systematics 31: 343–366.

    Google Scholar 

  • Colburn, E. A., S. Weeks & S. K. Reed, 2008. Diversity and Ecology of Vernal Pool Invertebrates. In Calhoun, A. J. K. & P. G. DeMaynadier (eds), Science and Conservation of Vernal Pools in Northeastern North America. CRC, Boca Raton, FL: 105–126.

    Google Scholar 

  • Culler, L. E. & W. O. Lamp, 2009. Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands. Freshwater Biology 54: 2003–2014.

    Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.

    CAS  Google Scholar 

  • de Szalay, F. A., D. P. Batzer & V. H. Resh, 1996. Mesocosm and macrocosm experiments to examine effects of mowing emergent vegetation on wetland invertebrates. Environmental Entomology 25: 303–309.

    Google Scholar 

  • Donald, D. B., 1983. Erratic occurrence of anostracans in a temporary pond: colonization and extinction or adaptation to variations in annual weather? Canadian Journal of Zoology 61: 1492–1498.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Durant, J. M., D. Ø. Hjermann, G. Ottersen & N. C. Stenseth, 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.

    Google Scholar 

  • Eng, L. L., D. Belk & C. H. Eriksen, 1990. Californian Anostraca: distribution, habitat, and status. Journal of Crustacean Biology 10: 247–277.

    Google Scholar 

  • Euliss Jr., N. H., J. W. LaBaugh, L. H. Fredrickson, D. M. Mushet, M. K. Laubhan, G. A. Swanson, T. C. Winter, D. O. Rosenberry & R. D. Nelson, 2004. The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24: 448–458.

    Google Scholar 

  • Ewald, N. C., S. E. Hartley & A. J. Stewart, 2013. Climate change and trophic interactions in model temporary pond systems: the effect of high temperature on predation rate depend on prey size and density. Freshwater Biology 58: 2481–2493.

    Google Scholar 

  • Federal Register, 2003. Endangered and threatened wildlife and plants; final designation of critical habitat for four vernal pool crustaceans and eleven vernal pool plants in California and Southern Oregon; final rule. Federal Register 68: 46684–46762.

    Google Scholar 

  • Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage & E. L. Charnov, 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251.

    CAS  PubMed  Google Scholar 

  • Green, A. J., P. Alcorlo, E. T. Peeters, E. P. Morris, J. L. Espinar, M. A. Bravo-Utrera, J. Bustamante, R. Díaz-Delgado, A. A. Koelmans, R. Mateo & W. M. Mooij, 2017. Creating a safe operating space for wetlands in a changing climate. Frontiers in Ecology and the Environment 15: 99–107.

    Google Scholar 

  • Gruner, D. S., M. E. Bracken, S. A. Berger, B. K. Eriksson, L. Gamfeldt, B. Matthiessen, S. Moorthi, U. Sommer & H. Hillebrand, 2017. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos 126: 8–17.

    Google Scholar 

  • Hammer, Ø., D. A. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.

    Google Scholar 

  • Harrington, R., I. Woiwod & T. Sparks, 1999. Climate change and trophic interactions. Trends in Ecology and Evolution 14: 146–150.

    CAS  PubMed  Google Scholar 

  • Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. Jame, A. McMahon, C. Meredith & K. Swadling, 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144.

    Google Scholar 

  • Hassan, R., R. Scholes & N. Ash, 2005. Millennium Ecosystem Assessment Ecosystems and Human Well-Being: Current State and Trends. Island Press, Washington, DC.

    Google Scholar 

  • Helm, B., 1998. The biogeography of eight large branchiopods endemic to California. In: C.W. Witham, E. Bauder, D. Belk, W. Ferren, and R. Ornduff (eds). Ecology, Conservation, and Management of Vernal Pool Ecosystems (pp. 124–139). Proceedings from a 1996 Conference. California Native Plant Society, Sacramento, California.

  • Holland, R. F., 2009. Glimmerings from the hogwallows. In: Fraga I Arguimbau P. (eds) International Conference on Mediterranean Temporary Ponds: Proceedings and Abstracts. Consell Insular de Menorca (pp. 37–61). Recerca 14. Maó, Menorca.

  • Holland, R. F. & S. K. Jain, 1981. Insular biogeography of vernal pools in the central valley of California. American Naturalist 117: 24–37.

    Google Scholar 

  • IBM Corporation, 2016. IBM SPSS Statistics for Windows, Version 24. IBM Corporation, Armonk, NY.

    Google Scholar 

  • Jeffries, M. J. & J. H. Lawton, 1984. Enemy free space and the structure of ecological communities. Biological Journal of the Linnean Society 23: 269–286.

    Google Scholar 

  • Jentsch, A., J. Kreyling & C. Beierkuhnlein, 2007. A new generation of climate-change experiments: events, not trends. Frontiers in Ecology and Environment 5: 365–374.

    Google Scholar 

  • Jocque, M., B. J. Riddoch & L. Brendonck, 2007. Successional phases and species replacements in freshwater rock pools: towards a biological definition of ephemeral systems. Freshwater Biology 52: 1734–1744.

    Google Scholar 

  • King, J. L., M. A. Simovich & R. C. Brusca, 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.

    Google Scholar 

  • Klecka, J. & D. S. Boukal, 2012. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS ONE 7: e37741.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kneitel, J. M., 2014. Inundation timing, more than duration, affects the community structure of Californian vernal pool mesocosms. Hydrobiologia 732: 71–83.

    CAS  Google Scholar 

  • Kneitel, J. M., 2018. Occupancy and environmental responses of habitat specialists and generalists depend on dispersal traits. Ecosphere 9: e02143.

    Google Scholar 

  • Kneitel, J. M. & C. L. Lessin, 2010. Ecosystem-phase interactions: aquatic eutrophication decreases terrestrial plant diversity in California vernal pools. Oecologia 163: 461–469.

    PubMed  Google Scholar 

  • Kneitel, J. M., N. Samiylenko, L. Rosas-Saenz & A. Nerida, 2017. California vernal pool endemic responses to hydroperiod, plant thatch, and nutrients. Hydrobiologia 810: 129–140.

    Google Scholar 

  • McKee, D., D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Oceanography 48: 707–722.

    Google Scholar 

  • Montoya, J. M. & D. Raffaelli, 2010. Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B 365: 2013–2018.

    Google Scholar 

  • Nadeau, C. P., M. C. Urban & J. R. Bridle, 2017. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends in Ecology & Evolution 32: 786–800.

    Google Scholar 

  • Nielsen, D. L., D. Smith & R. Petrie, 2012. Resting egg banks can facilitate recovery of zooplankton communities after extended exposure to saline conditions. Freshwater Biology 57: 1306–1314.

    Google Scholar 

  • Ovaskainen, O., S. Skorokhodova, M. Yakovleva, A. Sukhov, A. Kutenkov, N. Kutenkova, A. Shcherbakov, E. Meyke & M. del Mar Delgado, 2013. Community-level phenological response to climate change. Proceedings of the National Academy of Sciences USA 110: 13434–13439.

    CAS  Google Scholar 

  • Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.

    Google Scholar 

  • Pinceel, T., B. Vanschoenwinkel, W. Hawinkel, K. Tuytens & L. Brendonck, 2017. Aridity promotes bet hedging via delayed hatching: a case study with two temporary pond crustaceans along a latitudinal gradient. Oecologia 184: 161–170.

    PubMed  Google Scholar 

  • Pintar, M. R., J. R. Bohenek, L. L. Eveland & W. J. Resetarits, 2018. Colonization across gradients of risk and reward: nutrients and predators generate species-specific responses among aquatic insects. Functional Ecology 32: 1589–1598.

    Google Scholar 

  • Pitt, M. D. & H. F. Heady, 1978. Responses of annual vegetation to temperature and rainfall patterns in northern California. Ecology 59: 336–350.

    Google Scholar 

  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger & D. W. Pierce, 2017. Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Scientific Reports 7: 10783. https://doi.org/10.1038/s41598-017-11285-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyke, C. R., 2005. Assessing climate change impacts on vernal pool ecosystems and endemic branchiopods. Ecosystems 8: 95–105.

    Google Scholar 

  • Rhazi, L., P. Grillas, E. R. Saber, M. Rhazi, L. Brendonck & A. Waterkeyn, 2012. Vegetation of Mediterranean temporary pools: a fading jewel? Hydrobiologia 689: 23–36.

    Google Scholar 

  • Richardson, A. J., 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science 65: 279–295.

    Google Scholar 

  • Rosset, V., A. Ruhi, M. T. Bogan & T. Datry, 2017. Do lentic and lotic communities respond similarly to drying? Ecosphere 8(7): e01809.

    Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, B. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    CAS  PubMed  Google Scholar 

  • Sanford, E., 1999. Regulation of keystone predation by small changes in ocean temperature. Science 283: 2095–2097.

    CAS  PubMed  Google Scholar 

  • Serrano, L. & L. Serrano, 1991. Influence of groundwater exploitation for urban water supply on temporary ponds from the Donana National Park (SW Spain). Journal of Environmental Management 46: 229–238.

    Google Scholar 

  • Shurin, J. B., J. L. Clasen, H. S. Greig, P. Kratina & P. L. Thompson, 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B 367: 3008–3017.

    Google Scholar 

  • Simovich, M.A., 1998. Crustacean biodiversity and endemism in California’s ephemeral wetlands. In Witham C. W. et al. (eds) Ecology, Conservation, and Management of Vernal Pool Ecosystems (pp. 107–118). Proceedings from a 1996 Conference. California Native Plant Society, Sacramento, CA, USA.

  • Simovich, M. A. & S. Hathaway, 1997. Diversified bet-hedging as a reproductive strategy of some ephemeral pool anostracans (Branchiopoda). Journal of Crustacean Biology 17: 38–44.

    Google Scholar 

  • Skelly, D. K., 2002. Experimental venue and estimation of interaction strength. Ecology 83: 2097–2101.

    Google Scholar 

  • Stewart, R. I., M. Dossena, D. A. Bohan, E. Jeppesen, R. L. Kordas, M. E. Ledger, M. Meerhoff, B. Moss, C. Mulder, J. B. Shurin, R. M. Thompson, G. Woodward, M. Trimmer & B. Suttle, 2013. Mesocosm experiments as a tool for ecological climate-change research. Advances in Ecological Research 48: 71–181.

    Google Scholar 

  • Strecker, A. L., T. P. Cobb & R. D. Vinebrooke, 2004. Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnology and Oceanography 49: 1182–1190.

    CAS  Google Scholar 

  • Thorp, J. H. & A. P. Covich, 2009. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York.

    Google Scholar 

  • Van den Broeck, M., A. Waterkeyn, L. Rhazi, P. Grillas & L. Brendonck, 2015. Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds. Ecological Indicators 54: 1–11.

    Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31: 567–577.

    Google Scholar 

  • Vanschoenwinkel, B., A. N. N. Hulsmans, E. De Roeck, C. De Vries, M. Seaman & L. Brendonck, 2009. Community structure in temporary freshwater pools: disentangling the effects of habitat size and hydroregime. Freshwater Biology 54: 1487–1500.

    Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman & L. Brendonck, 2010. Species sorting in space and time – the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29: 1267–1278.

    Google Scholar 

  • Vanschoenwinkel, B., F. Buschke & L. Brendonck, 2013. Disturbance regime alters the impact of dispersal on alpha and beta diversity in a natural metacommunity. Ecology 94: 2547–2557.

    PubMed  Google Scholar 

  • Walther, G. R., 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B 365: 2019–2024.

    Google Scholar 

  • Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    CAS  PubMed  Google Scholar 

  • Warner, R. R. & P. L. Chesson, 1985. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. American Naturalist 125: 769–787.

    Google Scholar 

  • Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.

    CAS  Google Scholar 

  • Waterkeyn, A., B. Vanschoenwinkel, H. Vercampt, P. Grillas & L. Brendonck, 2011a. Long-term effects of salinity and disturbance regime on active and dormant crustacean communities. Limnology and Oceanography 56: 1–16.

    Google Scholar 

  • Waterkeyn, A., P. Grillas, M. Anton-Pardo, B. Vanschoenwinkel & L. Brendonck, 2011b. Can large branchiopods shape microcrustacean communities in Mediterranean temporary wetlands? Marine and Freshwater Research 62: 46–53.

    CAS  Google Scholar 

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Google Scholar 

  • Wiggins, G. G., R. J. MacKay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary ponds. Archiv fur Hydrobiologia 58: 97–206.

    Google Scholar 

  • Williams, D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.

    Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B 365: 2093–2106.

    Google Scholar 

  • Yvon-Durocher, G., A. P. Allen, M. Cellamare, M. Dossena, K. J. Gaston, M. Leitao, J. M. Montoya, D. C. Reuman, G. Woodward & M. Trimmer, 2015. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biology 13: e1002324.

    PubMed  PubMed Central  Google Scholar 

  • Zedler, P., 1987. The ecology of southern California vernal pools: A community profile. -Biological Report 85: National Wetlands Research Center, U.S. Fish and Wildlife Service.

Download references

Acknowledgements

We thank Tim Davidson, Jimmy Pitzer, and 2 reviewers for useful comments that greatly improved the clarity of the manuscript. This research was supported by CSUS Department of Biological Sciences, a National Science Foundation Grant DEB 1354724 to JMK, and the Fulbright Scholar Program/United States-Israel Educational Foundation to JMK. The study was sampled under USFWS Permit TE192702 to JMK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi R. Shin.

Additional information

Handling editor: Dani Boix

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, H.R., Kneitel, J.M. Warming interacts with inundation timing to influence the species composition of California vernal pool communities. Hydrobiologia 843, 93–105 (2019). https://doi.org/10.1007/s10750-019-04040-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04040-z

Keywords

Navigation