Non-native fish as glochidial sinks: elucidating disruption pathways for Echyridella menziesii recruitment

  • Thomas P. MooreEmail author
  • Susan J. Clearwater


A potential mechanism of global decline in freshwater mussel (Unionida: Bivalvia) abundance and diversity is disruption of their obligate parasitic life-cycle by non-native fish species, which may introduce novel interaction pathways that threaten unionid recruitment. We assessed three non-native fish (brown bullhead catfish, Ameiurus nebulosus; rudd, Scardinius erythrophthalmus; and goldfish, Carassius auratus) as glochidial hosts for the New Zealand freshwater mussel Echyridella menziesii to test the hypotheses that (i) non-native fish will have lower glochidial attachment rates than a native fish (the common bully Gobiomorphus cotidianus), and (ii) encystment rate will be lower on non-native species. We found that the non-native fish had significantly lower total glochidial attachment than the native control fish after infestation and did not produce ecologically significant quantities of juvenile mussels. This research supports the general assumption that non-native species are less suitable hosts of native freshwater mussels. However, confirming our findings in the field will indicate if removing non-native fish or enhancing native fish populations is recommended for conservation of E. menziesii populations in New Zealand.


Biotic homogenization Conservation Enemy release hypothesis Freshwater mussels Host–parasite interactions 



This work was funded by the Ministry of Business, Innovation and Employment (New Zealand’s Biological Heritage NSC, C09X1501). The authors thank Elizabeth Graham and Paul Brown for statistical advice, Anita Pearson, Anne Wecking, Brendan Hicks, Michéle Melchior, Nicole Hanrahan, Tracey Burton, and Warrick Powrie for field work assistance, Karen Thompson for laboratory assistance, and Kevin Collier, Ian Duggan, and anonymous reviewers for valuable feedback and comments to improve the quality of the manuscript. All authors declare that they have no conflicts of interest to disclose.

Supplementary material

10750_2019_4035_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
10750_2019_4035_MOESM2_ESM.docx (48 kb)
Supplementary material 2 (DOCX 48 kb)


  1. Aldridge, D. C., T. M. Fayle & N. Jackson, 2007. Freshwater mussel abundance predicts biodiversity in UK lowland rivers. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 554–564.CrossRefGoogle Scholar
  2. Araujo, R., D. Bragado & M. Ramos, 2000. Occurrence of glochidia of the endangered Margaritifera auricularia (Spengler, 1793) and other mussel species (Bivalvia: Unionoida) in drift and on fishes in an ancient channel of the Ebro River. Archiv fur Hydrobiologie 148: 147.CrossRefGoogle Scholar
  3. ASTM, 2006. Standard guide for conducting laboratory toxicity tests with freshwater mussels. E2455-06. ASTM Committee E47 on Biological Effects and Environ Fate, West Conshohocken, PA.Google Scholar
  4. Atkinson, C. L., A. D. Christian, D. E. Spooner & C. C. Vaughn, 2014. Long-lived organisms provide an integrative footprint of agricultural land use. Ecological Applications 24: 375–384.CrossRefPubMedGoogle Scholar
  5. Bah, T., 2011. Inkscape. Guide to a Vector Drawing Program, 4th ed. Prenctice Hall, Upper Saddle River.Google Scholar
  6. Bailey, R. C. & R. H. Green, 1989. Spatial and temporal variation in a population of freshwater mussels in Shell Lake, NWT. Canadian Journal of Fisheries and Aquatic Sciences 46: 1392–1395.CrossRefGoogle Scholar
  7. Barnhart, M. C., W. R. Haag & W. N. Roston, 2008. Adaptations to host infection and larval parasitism in Unionoida. Journal of the North American Benthological Society 27: 370–394.CrossRefGoogle Scholar
  8. Becker, R. A., J. M. Chambers & A. R. Wilks, 1988. The New S Language. A Programming Environment for Data Analysis and Graphics. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.Google Scholar
  9. Berg, D. J., T. D. Levine, J. A. Stoeckel & B. K. Lang, 2008. A conceptual model linking demography and population genetics of freshwater mussels. Journal of the North American Benthological Society 27: 395–408.CrossRefGoogle Scholar
  10. Blangiardo, M. & M. Cameletti, 2015. Spatial and spatio-temporal Bayesian models with R-INLA. Wiley, New York.CrossRefGoogle Scholar
  11. Brown, R. L., S. J. Clearwater, K. L. Thompson, M. L. Martin, P. G. Jellyman, 2017. Comparison of host fish suitability for larvae (glochidia) of the native freshwater mussel, Echyridella menziesii. Poster presentation to the Integrating Multiple Aquatic Values, 5th Biennial Symposium of the International Society for River Science in association with the IPENZ/Water NZ Rivers Group and the New Zealand Freshwater Sciences Society, Hamilton, New Zealand 19–24 November 2017.Google Scholar
  12. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer-Verlag, New York.Google Scholar
  13. Christian, A. D., E. M. Monroe, A. M. Asher, J. M. Loutsch & D. J. Berg, 2007. Methods of DNA extraction and PCR amplification for individual freshwater mussel (Bivalvia: Unionidae) glochidia, with the first report of multiple paternity in these organisms. Molecular Ecology Notes 7: 570–573.CrossRefGoogle Scholar
  14. Clearwater, S. J., K. J. Thompson & C. W. Hickey, 2014. Acute toxicity of copper, zinc, and ammonia to larvae (Glochidia) of a native freshwater mussel Echyridella menziesii in New Zealand. Archives of Environmental Contamination and Toxicology 66: 213–226.CrossRefPubMedGoogle Scholar
  15. Collier, K. J. & N. P. Grainger, 2015. New Zealand Invasive Fish Management Handbook. Lake Ecosystem Restoration New Zealand (LERNZ; The University of Waikato) and Department of Conservation, Hamilton.Google Scholar
  16. Collier, K. J. & I. D. Hogg, 2010. Macroinvertebrates. In Collier, K. J., D. P. Hamilton, D. P. Vant & C. Howard-Williams (eds), The Waters of the Waikato. Ecology of New Zealand’s Longest River. Environment Waikato and The Centre for Biodiversity and Ecology Research (The University of Waikato), Hamilton.Google Scholar
  17. Collier, K. J., M. P. Hamer & S. C. Moore, 2014. Littoral and benthic macroinvertebrate community responses to contrasting stressors in a large New Zealand river. New Zealand Journal of Marine and Freshwater Research. 48: 560–576.CrossRefGoogle Scholar
  18. Collier, K. J., J. R. Leathwick & D. K. Rowe, 2016. Assessing vulnerability of New Zealand lakes to loss of conservation value from invasive fish impacts. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 534–546.CrossRefGoogle Scholar
  19. Collier, K. J., M. A. Pingram, L. Francis, J. Garrett-Walker & M. Melchior, 2018. Trophic overlap between non-native brown bullhead (Ameiurus nebulosus) and native shortfin eel (Anguilla australis) in shallow lakes. Ecology of Freshwater Fish 27: 888–897.CrossRefGoogle Scholar
  20. Cyr, H., K. J. Collier, S. J. Clearwater, B. J. Hicks & S. D. Stewart, 2016. Feeding and nutrient excretion of the New Zealand freshwater mussel Echyridella menziesii (Hyriidae, Unionida): implications for nearshore nutrient budgets in lakes and reservoirs. Aquatic Sciences 79: 557–571.CrossRefGoogle Scholar
  21. Dodd, B. J., M. C. Barnhart, C. L. Rogers-Lowery, T. B. Fobian & R. V. Dimock Jr., 2005. Cross-resistance of largemouth bass to glochidia of unionid mussels. Journal of Parasitology 91: 1064–1072.CrossRefPubMedGoogle Scholar
  22. Donrovich, S. W., K. Douda, V. Plechingerová, K. Rylková, P. Horký, O. Slavík, H. Z. Liu, M. Reichard, M. Lopes-Lima & R. Sousa, 2017. Invasive Chinese pond mussel Sinanodonta woodiana threatens native mussel reproduction by inducing cross-resistance of host fish. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 1325–1335.CrossRefGoogle Scholar
  23. Douda, K., 2015. Host-dependent vitality of juvenile freshwater mussels: implications for breeding programs and host evaluation. Aquaculture 445: 5–10.CrossRefGoogle Scholar
  24. Douda, K., P. Horký & M. Bílý, 2012. Host limitation of the thick-shelled river mussel: identifying the threats to declining affiliate species. Animal Conservation 15: 536–544.CrossRefGoogle Scholar
  25. Douda, K., M. Lopes-Lima, M. Hinzmann, J. Machado, S. Varandas, A. Teixeira, R. Sousa & A. Ricciardi, 2013. Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel’s host resources. Diversity and Distributions 19: 933–942.CrossRefGoogle Scholar
  26. Douda, K., H.-Z. Liu, D. Yu, R. Rouchet, F. Liu, Q.-Y. Tang, C. Methling, C. Smith & M. Reichard, 2017. The role of local adaptation in shaping fish-mussel coevolution. Freshwater Biology 62: 1365–2427.Google Scholar
  27. Dubansky, B., B. Whitaker & F. Galvez, 2011. Influence of cortisol on the attachment and metamorphosis of larval Utterbackia imbecillis on bluegill sunfish (Lepomis macrochirus). The Biological Bulletin 220: 97–106.CrossRefPubMedGoogle Scholar
  28. Ferguson, C. D., M. J. Blum, M. L. Raymer, M. S. Eackles & D. E. Krane, 2013. Population structure, multiple paternity, and long-distance transport of spermatozoa in the freshwater mussel Lampsilis cardium (Bivalvia: Unionidae). Freshwater Science 32: 267–282.CrossRefGoogle Scholar
  29. Ferreira-Rodríguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, M. Christopher Barnhart, Y. V. Bespalaya, A. E. Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrigran, V. T. Do, K. Douda, E. Froufe, C. Gumpinger, L. Henrikson, C. L. Humphrey, N. A. Johnson, O. Klishko, M. W. Klunzinger, S. Kovitvadhi, U. Kovitvadhi, J. Lajtner, M. Lopes-Lima, E. A. Moorkens, S. Nagayama, K.-O. Nagel, M. Nakano, J. N. Negishi, P. Ondina, P. Oulasvirta, V. Prié, N. Riccardi, M. Rudzīte, F. Sheldon, R. Sousa, D. L. Strayer, M. Takeuchi, J. Taskinen, A. Teixeira, J. S. Tiemann, M. Urbańska, S. Varandas, M. V. Vinarski, B. J. Wicklow, T. Zając & C. C. Vaughn, 2019. Research priorities for freshwater mussel conservation assessment. Biological Conservation 231: 77–87.CrossRefGoogle Scholar
  30. FMHD, 2017. The freshwater mussel host database, Illinois Natural History Survey & Ohio State University Museum of Biological Diversity, 2017. November 2018.
  31. Geist, J., 2011. Integrative freshwater ecology and biodiversity conservation. Ecological Indicators 11: 1507–1516.CrossRefGoogle Scholar
  32. Grainger, N., J. Harding, T. Drinan, K. Collier, B. Smith, R. Death, T. Makan & J. Rolfe, 2018. Conservation status of New Zealand freshwater invertebrates, 2018., New Zealand Threat Classification Series 28 Department of Conservation, Wellington.Google Scholar
  33. Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  34. Haag, W. R. & J. D. Williams, 2013. Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735: 45–60.CrossRefGoogle Scholar
  35. Harriger, K., A. Moerke & P. Badra, 2009. Freshwater mussel (Unionidae) distribution and demographics in relation to microhabitat in a first-order Michigan stream. Michigan Academician 39: 149–161.Google Scholar
  36. Hastie, L. C. & K. A. Toy, 2008. Changes in density, age structure and age-specific mortality in two western pearlshell (Margaritifera falcata) populations in Washington (1995-2006). Aquatic Conservation: Marine and Freshwater Ecosystems 18: 671–678.CrossRefGoogle Scholar
  37. Hicks, B. J., 2003. Managing invasive freshwater fish in New Zealand. Proceedings of a workshop hosted by Department of Conservation. May 10–12 2001. Biology and potential impacts of rudd (Scardinius erythrophthalmus L.) in New Zealand. Department of Conservation, Wellington: 49–58.Google Scholar
  38. Hiscock, I. D., 1951. A note on the life history of the Australian freshwater mussel, Hyridella australis Lam. Transactions of the Royal Society of South Australia 74: 146–148.Google Scholar
  39. Horký, P., K. Douda, M. Maciak, L. Závorka & O. Slavík, 2014. Parasite-induced alterations of host behaviour in a riverine fish: the effects of glochidia on host dispersal. Freshwater Biology 59: 1452–1461.CrossRefGoogle Scholar
  40. Hove, M. C., B. E. Sietman, J. E. Bakelaar, J. A. Bury, D. J. Heath, V. E. Pepi, J. E. Kurth, J. M. Davis, D. J. Hornbach & A. R. Kapuscinski, 2011. Early life history and distribution of pistolgrip (Tritogonia verrucosa (Rafinesque, 1820)) in Minnesota and Wisconsin. The American Midland Naturalist 165: 338–354.CrossRefGoogle Scholar
  41. Hove, M. C., M. T. Steingraeber, T. J. Newton, D. J. Heath, C. L. Nelson, J. A. Bury, J. E. Kurth, M. R. Bartsch, W. S. Thorpe, M. R. McGill & D. J. Hornbach, 2012. Early life history of the winged mapleleaf mussel (Quadrula fragosa). American Malacological Bulletin 30: 47–57.CrossRefGoogle Scholar
  42. Huber, V. & J. Geist, 2017. Glochidial development of the freshwater swan mussel (Anodonta cygnea, Linnaeus 1758) on native and invasive fish species. Biological Conservation 209: 230–238.CrossRefGoogle Scholar
  43. Huber, V. & J. Geist, 2019. Host fish status of native and invasive species for the freshwater mussel Anodonta anatina (Linnaeus, 1758). Biological Conservation 230: 48–57.CrossRefGoogle Scholar
  44. James, M., 1985. Distribution, biomass and production of the freshwater mussel, Hyridella menziesi (Gray), in Lake Taupo, New Zealand. Freshwater Biology 15: 307–314.CrossRefGoogle Scholar
  45. Jansen, W., G. Bauer & E. Zahner-Meike, 2001. Glochidial mortality in freshwater mussels. In Bauer, G. & K. Wachtler (eds), Ecology and Evolutionary Biology of the Freshwater Mussels Unionoidea., Ecological Studies 145 Springer-Verlay, Heidelberg: 185–211.CrossRefGoogle Scholar
  46. Keller, A. E. & D. Ruessler, 1997. Determination or verification of host fish for nine species of unionid mussels. American Midland Naturalist 138: 402–407.CrossRefGoogle Scholar
  47. Klunzinger, M. W., S. J. Beatty, D. L. Morgan, G. J. Thomson & A. J. Lymbery, 2012. Glochidia ecology in wild fish populations and laboratory determination of competent host fishes for an endemic freshwater mussel of south-western Australia. Australian Journal of Zoology 60: 26–37.CrossRefGoogle Scholar
  48. Levine, T. D., B. K. Lang & D. J. Berg, 2012. Physiological and ecological hosts of Popenaias popeii (Bivalvia: Unionidae): laboratory studies identify more hosts than field studies. Freshwater Biology 57: 1854–1864.CrossRefGoogle Scholar
  49. Lieschke, G. J. & N. S. Trede, 2009. Fish Immunology 19: R678–R682.Google Scholar
  50. Lopes-Lima, M., R. Sousa, J. Geist, D. C. Aldridge, R. Araujo, J. Bergengren, Y. Bespalaya, E. Bódis, L. Burlakova & D. Van Damme, 2016. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biological Reviews 92: 572–607.CrossRefPubMedGoogle Scholar
  51. Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810: 1–14.CrossRefGoogle Scholar
  52. Lopez, M. A. & C. R. Altaba, 2005. Fish host determination for Margaritifera auricularia (Bivalvia: Unionoida): results and implications. Bolletino Malacologico 41: 88–98.Google Scholar
  53. Lummer, E. M., K. Auerswald & J. Geist, 2016. Fine sediment as environmental stressor affecting freshwater mussel behavior and ecosystem services. Science of The Total Environment 571: 1340–1348.CrossRefPubMedGoogle Scholar
  54. Marwaha, J., K. H. Jensen, P. J. Jakobsen & J. Geist, 2017. Duration of the parasitic phase determines subsequent performance in juvenile freshwater pearl mussels (Margaritifera margaritifera). Ecology and Evolution 7: 1375–1383.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Meyers, T. R. & R. E. Millemann, 1977. Glochidiosis of salmonid fishes. I. Comparative susceptibility to experimental infection with Margaritifera margaritifera (L.) (Pelecypoda: Margaritanidae). Journal of Parasitology 63: 728–733.CrossRefPubMedGoogle Scholar
  56. Mierzejewska, K., Y. Kvach, K. Stańczak, J. Grabowska, M. Woźniak, J. Dziekońska-Rynko & M. Ovcharenko, 2014. Parasites of non-native gobies in the Włocławek Reservoir on the lower Vistula River, first comprehensive study in Poland. Knowledge and Management of Aquatic Ecosystems 414: 01.CrossRefGoogle Scholar
  57. Mikheev, V. N., A. F. Pasternak, E. T. Valtonen & J. Taskinen, 2014. Increased ventilation by fish leads to a higher risk of parasitism. Parasites and Vectors 7: 281.CrossRefPubMedGoogle Scholar
  58. Modesto, V., M. Ilarri, A. T. Souza, M. Lopes-Lima, K. Douda, M. Clavero & R. Sousa, 2018. Fish and mussels: importance of fish for freshwater mussel conservation. Fish and Fisheries 19: 244–259.CrossRefGoogle Scholar
  59. Moore, T. P., K. J. Collier & I. C. Duggan, 2019. Interactions between Unionida and non-native species: a global meta-analysis. Aquatic Conservation: Marine and Freshwater Ecosystems. Scholar
  60. O’Connell, M. T. & R. J. Neves, 1999. Evidence of immunological Responses by a host fish (Ambloplites rupestris) and two non-host fishes (Cyprinus carpio and Carassius auratus) to glochidia of a freshwater mussel (Villosa iris). Journal of Freshwater Ecology 14: 71–78.CrossRefGoogle Scholar
  61. O’Shea, B., A. Mordue-Luntz, R. Fryer, C. Pert & I. Bricknell, 2006. Determination of the surface area of a fish. Journal of Fish Diseases 29: 437–440.CrossRefPubMedGoogle Scholar
  62. Ogilvie, S. & S. Mitchell, 1995. A model of mussel filtration in a shallow New Zealand lake, with reference to eutrophication control. Archiv für Hydrobiologie 133: 471–482.Google Scholar
  63. Olden, J. D., 2006. Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33: 2027–2039.CrossRefGoogle Scholar
  64. Paerl, H. W., 2009. Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32: 593–601.CrossRefGoogle Scholar
  65. Paul, W. & D. P. Hamilton, 2008. Sediment Removal as a Restoration Measure for the Campus Lakes, Vol. 84. Centre for Biodiversity and Ecology Research (University of Waikato), Hamilton: 2–3.Google Scholar
  66. Poos, M., A. J. Dextrase, A. N. Schwalb & J. D. Ackerman, 2010. Secondary invasion of the round goby into high diversity Great Lakes tributaries and species at risk hotspots: potential new concerns for endangered freshwater species. Biological Invasions 12: 1269–1284.CrossRefGoogle Scholar
  67. R Core Team, 2018. R: A Language and Environment for Statistical Computing. R foundation for Statistical Computing, Vienna.Google Scholar
  68. Rahel, F. J., 2007. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater biology 52: 696–710.CrossRefGoogle Scholar
  69. Reichard, M., K. Douda, M. Przybylski, O. P. Popa, E. Karbanova, K. Matasova, K. Rylkova, M. Polacik, R. Blazek & C. Smith, 2015. Population-specific responses to an invasive species. Proceedings of the Royal Society B 282: 1063.CrossRefGoogle Scholar
  70. Roberts, A. D. & M. C. Barnhart, 1999. Effects of temperature, pH, and CO 2 on transformation of the glochidia of Anodonta suborbiculata on fish hosts and in vitro. Journal of the North American Benthological Society 18: 477–487.CrossRefGoogle Scholar
  71. Rogers-Lowery, C. L. & R. V. Dimock Jr., 2006. Encapsulation of attached ectoparasitic glochidia larvae of freshwater mussels by epithelial tissue on fins of naive and resistant host fish. The Biological Bulletin 210: 51–63.CrossRefPubMedGoogle Scholar
  72. Roper, D. S. & C. W. Hickey, 1994. Population structure, shell morphology, age and condition of the freshwater mussel Hyridella menziesi (Unionacea: Hyriidae) from seven lake and river sites in the Waikato River system. Hydrobiologia 284: 205–217.CrossRefGoogle Scholar
  73. Rowe, D. K. & T. Wilding, 2012. Risk assessment model for the introduction of non-native freshwater fish into New Zealand. Journal of Applied Ichthyology 28: 582–589.CrossRefGoogle Scholar
  74. Rue, H., S. Martino & N. Chopin, 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71: 319–392.CrossRefGoogle Scholar
  75. Salonen, J. K., T. J. Marjomäki & J. Taskinen, 2016. An alien fish threatens an endangered parasitic bivalve: the relationship between brook trout (Salvelinus fontinalis) and freshwater pearl mussel (Margaritifera margaritifera) in northern Europe. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 1130–1144.CrossRefGoogle Scholar
  76. Šlapanský, L., P. Jurajda & M. Janáč, 2016. Early life stages of exotic gobiids as new hosts for unionid glochidia. Freshwater Biology 61: 979–990.CrossRefGoogle Scholar
  77. Slavik, O., P. Horky, K. Douda, J. Velisek, J. Kolarova & P. Lepic, 2017. Parasite-induced increases in the energy costs of movement of host freshwater fish. Physiology and Behavior 171: 127–134.CrossRefPubMedGoogle Scholar
  78. Strayer, D. L., 2013. Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735: 277–292.CrossRefGoogle Scholar
  79. Steingraeber, M. T., M. R. Bartsch, J. E. Kalas & T. J. Newton, 2007. Thermal criteria for early life stage development of the winged mapleleaf mussel (Quadrula fragosa). American Midland Naturalist. 157: 297–312.CrossRefGoogle Scholar
  80. Taeubert, J.-E., G. El-Nobi & J. Geist, 2014. Effects of water temperature on the larval parasitic stage of the thick-shelled river mussel (Unio crassus). Aquatic Conservation: Marine and Freshwater Ecosystems 24: 231–237.CrossRefGoogle Scholar
  81. Taeubert, J.-E. & J. Geist, 2013. Critical swimming speed of brown trout (Salmo trutta) infested with freshwater pearl mussel (Margaritifera margaritifera) glochidia and implications for artificial breeding of an endangered mussel species. Parasitology Research 112: 1607–1613.CrossRefPubMedGoogle Scholar
  82. Taeubert, J. E., B. Gum & J. Geist, 2012. Host-specificity of the endangered thick-shelled river mussel (Unio crassus, Philipsson 1788) and implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 36–46.CrossRefGoogle Scholar
  83. Thogmartin, W. E. & M. G. Knutson, 2007. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model. Landscape Ecology 22: 61–75.CrossRefGoogle Scholar
  84. Thomas, G. R., J. Taylor & C. G. De Leaniz, 2014. Does the parasitic freshwater pearl mussel M. margaritifera harm its host? Hydrobiologia 735: 191–201.CrossRefGoogle Scholar
  85. Torchin, M. E., K. D. Lafferty, A. P. Dobson, V. J. McKenzie & A. M. J. Kuris, 2003. Introduced species and their missing parasites. Nature 421: 628–630.CrossRefGoogle Scholar
  86. Tremblay, M. E., T. J. Morris & J. D. Ackerman, 2016. Loss of reproductive output caused by an invasive species. Royal Society Open Science 3: 150481.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tricarico, E., A. O. R. Junqueira & D. Dudgeon, 2016. Alien species in aquatic environments: a selective comparison of coastal and inland waters in tropical and temperate latitudes. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 872–891.CrossRefGoogle Scholar
  88. Vaughn, C. C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 15.CrossRefGoogle Scholar
  89. Walker, K. F., 1981. Ecology of Freshwater Mussels in the River Murray. Technical Paper No. 63. Australian Water Resources Council Australian Government Publishing Service, Canberra.Google Scholar
  90. Walker, K. F., H. A. Jones & M. W. Klunzinger, 2014. Bivalves in a bottleneck: taxonomy, phylogeography and conservation of freshwater mussels (Bivalvia: Unionoida) in Australasia. Hydrobiologia 735: 61–79.CrossRefGoogle Scholar
  91. Wang, N., T. Augspurger, M. C. Barnhart, J. R. Bidwell, W. G. Cope, F. J. Dwyer, S. Geis, I. E. Greer, C. G. Ingersoll, C. M. Kane, T. W. May, R. J. Neves, T. J. Newton, A. D. Roberts & D. W. Whites, 2007. Intra-and interlaboratory variability in acute toxicity tests with glochidia and juveniles of freshwater mussels (Unionidae). Environmental Toxicology and Chemistry 26: 2029–2035.CrossRefPubMedGoogle Scholar
  92. Watters, G., T. Menker, S. Thomas & K. J. E. Kuehnl, 2005. Host identifications or confirmations. Ellipsaria 7: 11–12.Google Scholar
  93. Watters, T. G. & S. H. O’Dee, 1998. Metamorphosis of freshwater mussel glochidia (Bivalvia: Unionidae) on amphibians and exotic fishes. The American Midland Naturalist 139: 49–57.CrossRefGoogle Scholar
  94. Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers?—a planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753–762.CrossRefGoogle Scholar
  95. Zieritz, A., A. E. Bogan, E. Froufe, O. Klishko, T. Kondo, U. Kovitvadhi, S. Kovitvadhi, J. H. Lee, M. Lopes-Lima, J. M. Pfeiffer, R. Sousa, T. Van Do, I. Vikhrev & D. T. Zanatta, 2017. Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia 810: 29–44.CrossRefGoogle Scholar
  96. Zuur, A. F., A. A. Saveliev & E. N. Leno, 2017. Beginner’s guide to spatial, temporal, and spatial-temporal ecological data analysis with R-INLA statistics, Vol. 1., Using GLM and GLMM Highland Statistics Ltd, Ellon: 357.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Environmental Research Institute, Faculty of Science and EngineeringThe University of WaikatoHamiltonNew Zealand
  2. 2.National Institute of Water and Atmospheric ResearchHamiltonNew Zealand

Personalised recommendations