Skip to main content
Log in

Non-native fish as glochidial sinks: elucidating disruption pathways for Echyridella menziesii recruitment

  • FRESHWATER MOLLUSCS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A potential mechanism of global decline in freshwater mussel (Unionida: Bivalvia) abundance and diversity is disruption of their obligate parasitic life-cycle by non-native fish species, which may introduce novel interaction pathways that threaten unionid recruitment. We assessed three non-native fish (brown bullhead catfish, Ameiurus nebulosus; rudd, Scardinius erythrophthalmus; and goldfish, Carassius auratus) as glochidial hosts for the New Zealand freshwater mussel Echyridella menziesii to test the hypotheses that (i) non-native fish will have lower glochidial attachment rates than a native fish (the common bully Gobiomorphus cotidianus), and (ii) encystment rate will be lower on non-native species. We found that the non-native fish had significantly lower total glochidial attachment than the native control fish after infestation and did not produce ecologically significant quantities of juvenile mussels. This research supports the general assumption that non-native species are less suitable hosts of native freshwater mussels. However, confirming our findings in the field will indicate if removing non-native fish or enhancing native fish populations is recommended for conservation of E. menziesii populations in New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldridge, D. C., T. M. Fayle & N. Jackson, 2007. Freshwater mussel abundance predicts biodiversity in UK lowland rivers. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 554–564.

    Google Scholar 

  • Araujo, R., D. Bragado & M. Ramos, 2000. Occurrence of glochidia of the endangered Margaritifera auricularia (Spengler, 1793) and other mussel species (Bivalvia: Unionoida) in drift and on fishes in an ancient channel of the Ebro River. Archiv fur Hydrobiologie 148: 147.

    Google Scholar 

  • ASTM, 2006. Standard guide for conducting laboratory toxicity tests with freshwater mussels. E2455-06. ASTM Committee E47 on Biological Effects and Environ Fate, West Conshohocken, PA.

  • Atkinson, C. L., A. D. Christian, D. E. Spooner & C. C. Vaughn, 2014. Long-lived organisms provide an integrative footprint of agricultural land use. Ecological Applications 24: 375–384.

    PubMed  Google Scholar 

  • Bah, T., 2011. Inkscape. Guide to a Vector Drawing Program, 4th ed. Prenctice Hall, Upper Saddle River.

    Google Scholar 

  • Bailey, R. C. & R. H. Green, 1989. Spatial and temporal variation in a population of freshwater mussels in Shell Lake, NWT. Canadian Journal of Fisheries and Aquatic Sciences 46: 1392–1395.

    Google Scholar 

  • Barnhart, M. C., W. R. Haag & W. N. Roston, 2008. Adaptations to host infection and larval parasitism in Unionoida. Journal of the North American Benthological Society 27: 370–394.

    Google Scholar 

  • Becker, R. A., J. M. Chambers & A. R. Wilks, 1988. The New S Language. A Programming Environment for Data Analysis and Graphics. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.

    Google Scholar 

  • Berg, D. J., T. D. Levine, J. A. Stoeckel & B. K. Lang, 2008. A conceptual model linking demography and population genetics of freshwater mussels. Journal of the North American Benthological Society 27: 395–408.

    Google Scholar 

  • Blangiardo, M. & M. Cameletti, 2015. Spatial and spatio-temporal Bayesian models with R-INLA. Wiley, New York.

    Google Scholar 

  • Brown, R. L., S. J. Clearwater, K. L. Thompson, M. L. Martin, P. G. Jellyman, 2017. Comparison of host fish suitability for larvae (glochidia) of the native freshwater mussel, Echyridella menziesii. Poster presentation to the Integrating Multiple Aquatic Values, 5th Biennial Symposium of the International Society for River Science in association with the IPENZ/Water NZ Rivers Group and the New Zealand Freshwater Sciences Society, Hamilton, New Zealand 19–24 November 2017.

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  • Christian, A. D., E. M. Monroe, A. M. Asher, J. M. Loutsch & D. J. Berg, 2007. Methods of DNA extraction and PCR amplification for individual freshwater mussel (Bivalvia: Unionidae) glochidia, with the first report of multiple paternity in these organisms. Molecular Ecology Notes 7: 570–573.

    CAS  Google Scholar 

  • Clearwater, S. J., K. J. Thompson & C. W. Hickey, 2014. Acute toxicity of copper, zinc, and ammonia to larvae (Glochidia) of a native freshwater mussel Echyridella menziesii in New Zealand. Archives of Environmental Contamination and Toxicology 66: 213–226.

    CAS  PubMed  Google Scholar 

  • Collier, K. J. & N. P. Grainger, 2015. New Zealand Invasive Fish Management Handbook. Lake Ecosystem Restoration New Zealand (LERNZ; The University of Waikato) and Department of Conservation, Hamilton.

    Google Scholar 

  • Collier, K. J. & I. D. Hogg, 2010. Macroinvertebrates. In Collier, K. J., D. P. Hamilton, D. P. Vant & C. Howard-Williams (eds), The Waters of the Waikato. Ecology of New Zealand’s Longest River. Environment Waikato and The Centre for Biodiversity and Ecology Research (The University of Waikato), Hamilton.

    Google Scholar 

  • Collier, K. J., M. P. Hamer & S. C. Moore, 2014. Littoral and benthic macroinvertebrate community responses to contrasting stressors in a large New Zealand river. New Zealand Journal of Marine and Freshwater Research. 48: 560–576.

    CAS  Google Scholar 

  • Collier, K. J., J. R. Leathwick & D. K. Rowe, 2016. Assessing vulnerability of New Zealand lakes to loss of conservation value from invasive fish impacts. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 534–546.

    Google Scholar 

  • Collier, K. J., M. A. Pingram, L. Francis, J. Garrett-Walker & M. Melchior, 2018. Trophic overlap between non-native brown bullhead (Ameiurus nebulosus) and native shortfin eel (Anguilla australis) in shallow lakes. Ecology of Freshwater Fish 27: 888–897.

    Google Scholar 

  • Cyr, H., K. J. Collier, S. J. Clearwater, B. J. Hicks & S. D. Stewart, 2016. Feeding and nutrient excretion of the New Zealand freshwater mussel Echyridella menziesii (Hyriidae, Unionida): implications for nearshore nutrient budgets in lakes and reservoirs. Aquatic Sciences 79: 557–571.

    Google Scholar 

  • Dodd, B. J., M. C. Barnhart, C. L. Rogers-Lowery, T. B. Fobian & R. V. Dimock Jr., 2005. Cross-resistance of largemouth bass to glochidia of unionid mussels. Journal of Parasitology 91: 1064–1072.

    CAS  Google Scholar 

  • Donrovich, S. W., K. Douda, V. Plechingerová, K. Rylková, P. Horký, O. Slavík, H. Z. Liu, M. Reichard, M. Lopes-Lima & R. Sousa, 2017. Invasive Chinese pond mussel Sinanodonta woodiana threatens native mussel reproduction by inducing cross-resistance of host fish. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 1325–1335.

    Google Scholar 

  • Douda, K., 2015. Host-dependent vitality of juvenile freshwater mussels: implications for breeding programs and host evaluation. Aquaculture 445: 5–10.

    Google Scholar 

  • Douda, K., P. Horký & M. Bílý, 2012. Host limitation of the thick-shelled river mussel: identifying the threats to declining affiliate species. Animal Conservation 15: 536–544.

    Google Scholar 

  • Douda, K., M. Lopes-Lima, M. Hinzmann, J. Machado, S. Varandas, A. Teixeira, R. Sousa & A. Ricciardi, 2013. Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel’s host resources. Diversity and Distributions 19: 933–942.

    Google Scholar 

  • Douda, K., H.-Z. Liu, D. Yu, R. Rouchet, F. Liu, Q.-Y. Tang, C. Methling, C. Smith & M. Reichard, 2017. The role of local adaptation in shaping fish-mussel coevolution. Freshwater Biology 62: 1365–2427.

    Google Scholar 

  • Dubansky, B., B. Whitaker & F. Galvez, 2011. Influence of cortisol on the attachment and metamorphosis of larval Utterbackia imbecillis on bluegill sunfish (Lepomis macrochirus). The Biological Bulletin 220: 97–106.

    CAS  PubMed  Google Scholar 

  • Ferguson, C. D., M. J. Blum, M. L. Raymer, M. S. Eackles & D. E. Krane, 2013. Population structure, multiple paternity, and long-distance transport of spermatozoa in the freshwater mussel Lampsilis cardium (Bivalvia: Unionidae). Freshwater Science 32: 267–282.

    Google Scholar 

  • Ferreira-Rodríguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, M. Christopher Barnhart, Y. V. Bespalaya, A. E. Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrigran, V. T. Do, K. Douda, E. Froufe, C. Gumpinger, L. Henrikson, C. L. Humphrey, N. A. Johnson, O. Klishko, M. W. Klunzinger, S. Kovitvadhi, U. Kovitvadhi, J. Lajtner, M. Lopes-Lima, E. A. Moorkens, S. Nagayama, K.-O. Nagel, M. Nakano, J. N. Negishi, P. Ondina, P. Oulasvirta, V. Prié, N. Riccardi, M. Rudzīte, F. Sheldon, R. Sousa, D. L. Strayer, M. Takeuchi, J. Taskinen, A. Teixeira, J. S. Tiemann, M. Urbańska, S. Varandas, M. V. Vinarski, B. J. Wicklow, T. Zając & C. C. Vaughn, 2019. Research priorities for freshwater mussel conservation assessment. Biological Conservation 231: 77–87.

    Google Scholar 

  • FMHD, 2017. The freshwater mussel host database, Illinois Natural History Survey & Ohio State University Museum of Biological Diversity, 2017. https://wwv.inhs.illinois.edu/collections/mollusk/data/freshwater-mussel-host-database. November 2018.

  • Geist, J., 2011. Integrative freshwater ecology and biodiversity conservation. Ecological Indicators 11: 1507–1516.

    Google Scholar 

  • Grainger, N., J. Harding, T. Drinan, K. Collier, B. Smith, R. Death, T. Makan & J. Rolfe, 2018. Conservation status of New Zealand freshwater invertebrates, 2018., New Zealand Threat Classification Series 28 Department of Conservation, Wellington.

    Google Scholar 

  • Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Haag, W. R. & J. D. Williams, 2013. Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735: 45–60.

    Google Scholar 

  • Harriger, K., A. Moerke & P. Badra, 2009. Freshwater mussel (Unionidae) distribution and demographics in relation to microhabitat in a first-order Michigan stream. Michigan Academician 39: 149–161.

    Google Scholar 

  • Hastie, L. C. & K. A. Toy, 2008. Changes in density, age structure and age-specific mortality in two western pearlshell (Margaritifera falcata) populations in Washington (1995-2006). Aquatic Conservation: Marine and Freshwater Ecosystems 18: 671–678.

    Google Scholar 

  • Hicks, B. J., 2003. Managing invasive freshwater fish in New Zealand. Proceedings of a workshop hosted by Department of Conservation. May 10–12 2001. Biology and potential impacts of rudd (Scardinius erythrophthalmus L.) in New Zealand. Department of Conservation, Wellington: 49–58.

  • Hiscock, I. D., 1951. A note on the life history of the Australian freshwater mussel, Hyridella australis Lam. Transactions of the Royal Society of South Australia 74: 146–148.

    Google Scholar 

  • Horký, P., K. Douda, M. Maciak, L. Závorka & O. Slavík, 2014. Parasite-induced alterations of host behaviour in a riverine fish: the effects of glochidia on host dispersal. Freshwater Biology 59: 1452–1461.

    Google Scholar 

  • Hove, M. C., B. E. Sietman, J. E. Bakelaar, J. A. Bury, D. J. Heath, V. E. Pepi, J. E. Kurth, J. M. Davis, D. J. Hornbach & A. R. Kapuscinski, 2011. Early life history and distribution of pistolgrip (Tritogonia verrucosa (Rafinesque, 1820)) in Minnesota and Wisconsin. The American Midland Naturalist 165: 338–354.

    Google Scholar 

  • Hove, M. C., M. T. Steingraeber, T. J. Newton, D. J. Heath, C. L. Nelson, J. A. Bury, J. E. Kurth, M. R. Bartsch, W. S. Thorpe, M. R. McGill & D. J. Hornbach, 2012. Early life history of the winged mapleleaf mussel (Quadrula fragosa). American Malacological Bulletin 30: 47–57.

    Google Scholar 

  • Huber, V. & J. Geist, 2017. Glochidial development of the freshwater swan mussel (Anodonta cygnea, Linnaeus 1758) on native and invasive fish species. Biological Conservation 209: 230–238.

    Google Scholar 

  • Huber, V. & J. Geist, 2019. Host fish status of native and invasive species for the freshwater mussel Anodonta anatina (Linnaeus, 1758). Biological Conservation 230: 48–57.

    Google Scholar 

  • James, M., 1985. Distribution, biomass and production of the freshwater mussel, Hyridella menziesi (Gray), in Lake Taupo, New Zealand. Freshwater Biology 15: 307–314.

    Google Scholar 

  • Jansen, W., G. Bauer & E. Zahner-Meike, 2001. Glochidial mortality in freshwater mussels. In Bauer, G. & K. Wachtler (eds), Ecology and Evolutionary Biology of the Freshwater Mussels Unionoidea., Ecological Studies 145 Springer-Verlay, Heidelberg: 185–211.

    Google Scholar 

  • Keller, A. E. & D. Ruessler, 1997. Determination or verification of host fish for nine species of unionid mussels. American Midland Naturalist 138: 402–407.

    Google Scholar 

  • Klunzinger, M. W., S. J. Beatty, D. L. Morgan, G. J. Thomson & A. J. Lymbery, 2012. Glochidia ecology in wild fish populations and laboratory determination of competent host fishes for an endemic freshwater mussel of south-western Australia. Australian Journal of Zoology 60: 26–37.

    Google Scholar 

  • Levine, T. D., B. K. Lang & D. J. Berg, 2012. Physiological and ecological hosts of Popenaias popeii (Bivalvia: Unionidae): laboratory studies identify more hosts than field studies. Freshwater Biology 57: 1854–1864.

    Google Scholar 

  • Lieschke, G. J. & N. S. Trede, 2009. Fish Immunology 19: R678–R682.

    CAS  Google Scholar 

  • Lopes-Lima, M., R. Sousa, J. Geist, D. C. Aldridge, R. Araujo, J. Bergengren, Y. Bespalaya, E. Bódis, L. Burlakova & D. Van Damme, 2016. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biological Reviews 92: 572–607.

    PubMed  Google Scholar 

  • Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810: 1–14.

    Google Scholar 

  • Lopez, M. A. & C. R. Altaba, 2005. Fish host determination for Margaritifera auricularia (Bivalvia: Unionoida): results and implications. Bolletino Malacologico 41: 88–98.

    Google Scholar 

  • Lummer, E. M., K. Auerswald & J. Geist, 2016. Fine sediment as environmental stressor affecting freshwater mussel behavior and ecosystem services. Science of The Total Environment 571: 1340–1348.

    CAS  Google Scholar 

  • Marwaha, J., K. H. Jensen, P. J. Jakobsen & J. Geist, 2017. Duration of the parasitic phase determines subsequent performance in juvenile freshwater pearl mussels (Margaritifera margaritifera). Ecology and Evolution 7: 1375–1383.

    PubMed  PubMed Central  Google Scholar 

  • Meyers, T. R. & R. E. Millemann, 1977. Glochidiosis of salmonid fishes. I. Comparative susceptibility to experimental infection with Margaritifera margaritifera (L.) (Pelecypoda: Margaritanidae). Journal of Parasitology 63: 728–733.

    CAS  Google Scholar 

  • Mierzejewska, K., Y. Kvach, K. Stańczak, J. Grabowska, M. Woźniak, J. Dziekońska-Rynko & M. Ovcharenko, 2014. Parasites of non-native gobies in the Włocławek Reservoir on the lower Vistula River, first comprehensive study in Poland. Knowledge and Management of Aquatic Ecosystems 414: 01.

    Google Scholar 

  • Mikheev, V. N., A. F. Pasternak, E. T. Valtonen & J. Taskinen, 2014. Increased ventilation by fish leads to a higher risk of parasitism. Parasites and Vectors 7: 281.

    PubMed  Google Scholar 

  • Modesto, V., M. Ilarri, A. T. Souza, M. Lopes-Lima, K. Douda, M. Clavero & R. Sousa, 2018. Fish and mussels: importance of fish for freshwater mussel conservation. Fish and Fisheries 19: 244–259.

    Google Scholar 

  • Moore, T. P., K. J. Collier & I. C. Duggan, 2019. Interactions between Unionida and non-native species: a global meta-analysis. Aquatic Conservation: Marine and Freshwater Ecosystems. https://doi.org/10.1002/aqc.3040.

    Article  Google Scholar 

  • O’Connell, M. T. & R. J. Neves, 1999. Evidence of immunological Responses by a host fish (Ambloplites rupestris) and two non-host fishes (Cyprinus carpio and Carassius auratus) to glochidia of a freshwater mussel (Villosa iris). Journal of Freshwater Ecology 14: 71–78.

    Google Scholar 

  • O’Shea, B., A. Mordue-Luntz, R. Fryer, C. Pert & I. Bricknell, 2006. Determination of the surface area of a fish. Journal of Fish Diseases 29: 437–440.

    PubMed  Google Scholar 

  • Ogilvie, S. & S. Mitchell, 1995. A model of mussel filtration in a shallow New Zealand lake, with reference to eutrophication control. Archiv für Hydrobiologie 133: 471–482.

    Google Scholar 

  • Olden, J. D., 2006. Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33: 2027–2039.

    Google Scholar 

  • Paerl, H. W., 2009. Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32: 593–601.

    CAS  Google Scholar 

  • Paul, W. & D. P. Hamilton, 2008. Sediment Removal as a Restoration Measure for the Campus Lakes, Vol. 84. Centre for Biodiversity and Ecology Research (University of Waikato), Hamilton: 2–3.

    Google Scholar 

  • Poos, M., A. J. Dextrase, A. N. Schwalb & J. D. Ackerman, 2010. Secondary invasion of the round goby into high diversity Great Lakes tributaries and species at risk hotspots: potential new concerns for endangered freshwater species. Biological Invasions 12: 1269–1284.

    Google Scholar 

  • R Core Team, 2018. R: A Language and Environment for Statistical Computing. R foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rahel, F. J., 2007. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater biology 52: 696–710.

    Google Scholar 

  • Reichard, M., K. Douda, M. Przybylski, O. P. Popa, E. Karbanova, K. Matasova, K. Rylkova, M. Polacik, R. Blazek & C. Smith, 2015. Population-specific responses to an invasive species. Proceedings of the Royal Society B 282: 1063.

    Google Scholar 

  • Roberts, A. D. & M. C. Barnhart, 1999. Effects of temperature, pH, and CO 2 on transformation of the glochidia of Anodonta suborbiculata on fish hosts and in vitro. Journal of the North American Benthological Society 18: 477–487.

    Google Scholar 

  • Rogers-Lowery, C. L. & R. V. Dimock Jr., 2006. Encapsulation of attached ectoparasitic glochidia larvae of freshwater mussels by epithelial tissue on fins of naive and resistant host fish. The Biological Bulletin 210: 51–63.

    PubMed  Google Scholar 

  • Roper, D. S. & C. W. Hickey, 1994. Population structure, shell morphology, age and condition of the freshwater mussel Hyridella menziesi (Unionacea: Hyriidae) from seven lake and river sites in the Waikato River system. Hydrobiologia 284: 205–217.

    Google Scholar 

  • Rowe, D. K. & T. Wilding, 2012. Risk assessment model for the introduction of non-native freshwater fish into New Zealand. Journal of Applied Ichthyology 28: 582–589.

    Google Scholar 

  • Rue, H., S. Martino & N. Chopin, 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71: 319–392.

    Google Scholar 

  • Salonen, J. K., T. J. Marjomäki & J. Taskinen, 2016. An alien fish threatens an endangered parasitic bivalve: the relationship between brook trout (Salvelinus fontinalis) and freshwater pearl mussel (Margaritifera margaritifera) in northern Europe. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 1130–1144.

    Google Scholar 

  • Šlapanský, L., P. Jurajda & M. Janáč, 2016. Early life stages of exotic gobiids as new hosts for unionid glochidia. Freshwater Biology 61: 979–990.

    Google Scholar 

  • Slavik, O., P. Horky, K. Douda, J. Velisek, J. Kolarova & P. Lepic, 2017. Parasite-induced increases in the energy costs of movement of host freshwater fish. Physiology and Behavior 171: 127–134.

    CAS  PubMed  Google Scholar 

  • Strayer, D. L., 2013. Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735: 277–292.

    Google Scholar 

  • Steingraeber, M. T., M. R. Bartsch, J. E. Kalas & T. J. Newton, 2007. Thermal criteria for early life stage development of the winged mapleleaf mussel (Quadrula fragosa). American Midland Naturalist. 157: 297–312.

    Google Scholar 

  • Taeubert, J.-E., G. El-Nobi & J. Geist, 2014. Effects of water temperature on the larval parasitic stage of the thick-shelled river mussel (Unio crassus). Aquatic Conservation: Marine and Freshwater Ecosystems 24: 231–237.

    Google Scholar 

  • Taeubert, J.-E. & J. Geist, 2013. Critical swimming speed of brown trout (Salmo trutta) infested with freshwater pearl mussel (Margaritifera margaritifera) glochidia and implications for artificial breeding of an endangered mussel species. Parasitology Research 112: 1607–1613.

    PubMed  Google Scholar 

  • Taeubert, J. E., B. Gum & J. Geist, 2012. Host-specificity of the endangered thick-shelled river mussel (Unio crassus, Philipsson 1788) and implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 36–46.

    Google Scholar 

  • Thogmartin, W. E. & M. G. Knutson, 2007. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model. Landscape Ecology 22: 61–75.

    Google Scholar 

  • Thomas, G. R., J. Taylor & C. G. De Leaniz, 2014. Does the parasitic freshwater pearl mussel M. margaritifera harm its host? Hydrobiologia 735: 191–201.

    Google Scholar 

  • Torchin, M. E., K. D. Lafferty, A. P. Dobson, V. J. McKenzie & A. M. J. Kuris, 2003. Introduced species and their missing parasites. Nature 421: 628–630.

    CAS  PubMed  Google Scholar 

  • Tremblay, M. E., T. J. Morris & J. D. Ackerman, 2016. Loss of reproductive output caused by an invasive species. Royal Society Open Science 3: 150481.

    PubMed  PubMed Central  Google Scholar 

  • Tricarico, E., A. O. R. Junqueira & D. Dudgeon, 2016. Alien species in aquatic environments: a selective comparison of coastal and inland waters in tropical and temperate latitudes. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 872–891.

    Google Scholar 

  • Vaughn, C. C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 15.

    Google Scholar 

  • Walker, K. F., 1981. Ecology of Freshwater Mussels in the River Murray. Technical Paper No. 63. Australian Water Resources Council Australian Government Publishing Service, Canberra.

    Google Scholar 

  • Walker, K. F., H. A. Jones & M. W. Klunzinger, 2014. Bivalves in a bottleneck: taxonomy, phylogeography and conservation of freshwater mussels (Bivalvia: Unionoida) in Australasia. Hydrobiologia 735: 61–79.

    Google Scholar 

  • Wang, N., T. Augspurger, M. C. Barnhart, J. R. Bidwell, W. G. Cope, F. J. Dwyer, S. Geis, I. E. Greer, C. G. Ingersoll, C. M. Kane, T. W. May, R. J. Neves, T. J. Newton, A. D. Roberts & D. W. Whites, 2007. Intra-and interlaboratory variability in acute toxicity tests with glochidia and juveniles of freshwater mussels (Unionidae). Environmental Toxicology and Chemistry 26: 2029–2035.

    CAS  PubMed  Google Scholar 

  • Watters, G., T. Menker, S. Thomas & K. J. E. Kuehnl, 2005. Host identifications or confirmations. Ellipsaria 7: 11–12.

    Google Scholar 

  • Watters, T. G. & S. H. O’Dee, 1998. Metamorphosis of freshwater mussel glochidia (Bivalvia: Unionidae) on amphibians and exotic fishes. The American Midland Naturalist 139: 49–57.

    Google Scholar 

  • Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers?—a planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753–762.

    Google Scholar 

  • Zieritz, A., A. E. Bogan, E. Froufe, O. Klishko, T. Kondo, U. Kovitvadhi, S. Kovitvadhi, J. H. Lee, M. Lopes-Lima, J. M. Pfeiffer, R. Sousa, T. Van Do, I. Vikhrev & D. T. Zanatta, 2017. Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia 810: 29–44.

    Google Scholar 

  • Zuur, A. F., A. A. Saveliev & E. N. Leno, 2017. Beginner’s guide to spatial, temporal, and spatial-temporal ecological data analysis with R-INLA statistics, Vol. 1., Using GLM and GLMM Highland Statistics Ltd, Ellon: 357.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Business, Innovation and Employment (New Zealand’s Biological Heritage NSC, C09X1501). The authors thank Elizabeth Graham and Paul Brown for statistical advice, Anita Pearson, Anne Wecking, Brendan Hicks, Michéle Melchior, Nicole Hanrahan, Tracey Burton, and Warrick Powrie for field work assistance, Karen Thompson for laboratory assistance, and Kevin Collier, Ian Duggan, and anonymous reviewers for valuable feedback and comments to improve the quality of the manuscript. All authors declare that they have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Moore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Manuel P. M. Lopes-Lima, Nicoletta Riccardi, Maria Urbanska & Ronaldo G. Sousa / Biology and Conservation of Freshwater Molluscs

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, T.P., Clearwater, S.J. Non-native fish as glochidial sinks: elucidating disruption pathways for Echyridella menziesii recruitment. Hydrobiologia 848, 3191–3207 (2021). https://doi.org/10.1007/s10750-019-04035-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04035-w

Keywords

Navigation