Habitat preferences of Micrasterias arcuata (Desmidiales, Viridiplantae) in wetlands from central Brazil: an allometric study

  • Bárbara Medeiros FonsecaEmail author
  • Lidia Mendes Feijó
  • Jiří Neustupa
Primary Research Paper


The green alga Micrasterias arcuata is commonly found in the periphyton of slightly acidic ponds and wet grasslands of central Brazil. We used M. arcuata complex as a model system for evaluation of the following questions: (a) Is there any relation between morphological characteristics of M. arcuata populations and ecological features of the sites? (b) Can the observed plasticity be explained by an allometric scaling relationship leading to differential distribution of the morphotypes among different habitats (ponds and wet grasslands)? (c) Is there any surface-to-volume ratio (S:V) scaling that can be explained as adaptive response to ecological characteristics of sites? A total of 50 individual semicells of M. arcuata were photographed from ten natural populations, yielding a 500 objects dataset. Individuals from ponds were morphologically different from the ones in the wet grasslands, presenting bigger cells, but also with higher S:V. The eventual surface loss usually associated to bigger sizes was compensated by more elaborated cells, yielding positive allometry of the S:V ratio scaling. Our data support the idea that such differences in cell morphology are an adaptation to environmental conditions, especially desiccation stress favoring cells with lower S:V and higher isoperimetric quotient in the wet grasslands.


Allometry Cerrado Geometric morphometrics Phytobenthos Tropical desmids 



This study was sponsored by the Research Foundation of the Federal District (Fundação de Apoio à Pesquisa do Distrito Federal, FAPDF) (Award number 0193.001384/2016). We thank the Catholic University of Brasília (UCB) for the logistic support for the biological collections; the Chico Mendes Institute for Biodiversity Conservation (ICMBio) for support in the Brasília National Park and in the Chapada dos Veadeiros National Park; the Brazilian Army for its assistance in the Formosa Instructional Camp; the administration staffs of RECOR and ESECAE for their support within these areas. The authors also thank to Cristielly de Oliveira Silva Machado (UCB) for her help with the pictures, and to Eti Ester Levi (Aarhus University, Denmark) for her support during the final revision.

Supplementary material

10750_2019_4032_MOESM1_ESM.pdf (4.2 mb)
Supplementary material 1 (PDF 4344 kb)
10750_2019_4032_MOESM2_ESM.pdf (114 kb)
Supplementary material 2 (PDF 114 kb)
10750_2019_4032_MOESM3_ESM.pdf (75 kb)
Supplementary material 3 (PDF 74 kb)
10750_2019_4032_MOESM4_ESM.pdf (186 kb)
Supplementary material 4 (PDF 186 kb)


  1. APHA, 2005. Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC.Google Scholar
  2. Bailey, J. W., 1851. Microscopical observations made in South Carolina, Georgia and Florida. Smithsonian Contributions to Knowledge 2: 1–48.Google Scholar
  3. Bestová, H., F. Munoz, P. Svoboda, P. Škaloud & C. Violle, 2018. Ecological and biogeographical drivers of freshwater green algae biodiversity: from local communities to large-scale species pools of desmids. Oecologia 186: 1017–1030.CrossRefPubMedGoogle Scholar
  4. Bicudo, C. E. M. & F. Gil-Gil, 2003. Different morphological expressions or taxonomical entities of Micrasterias arcuata (Desmidiales, Zygnemaphyceae). Biologia 58: 645–655.Google Scholar
  5. Bicudo, C. E. M. & L. Sormus, 1982. Desmidiofórula paulista, 2: gênero Micrasterias C. Agardh ex Ralfs. Bibliotheca Phycologica 57: 1–230.Google Scholar
  6. Broly, P., C. Devigne & J.-L. Deneubourg, 2015. Body shape in terrestrial isopods: a morphological mechanism to resist desiccation? Journal of Morphology 276: 1283–01289.CrossRefPubMedGoogle Scholar
  7. Brook, A. J., 1981. The Biology of Desmids. Botanical Monographs 16. Blackwell, Oxford.Google Scholar
  8. Cianciaruso, M. V. & M. A. Batalha, 2008. A year in a Cerrado wet grassland: a non-seasonal island in a seasonal savanna environment cerrado vegetation. Brazilian Journal of Biology 68: 495–501.CrossRefGoogle Scholar
  9. Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  10. Coesel, P. F. M., 1982. Structural characteristics and adaptations of desmid communities. Journal of Ecolology 70: 163–177.CrossRefGoogle Scholar
  11. Coesel, P. F. M. & J. Meester, 2007. Desmids of the Lowlands. KNNV, Princeton.CrossRefGoogle Scholar
  12. Esri, 2012, Topographic [basemap]. Scale Not Given. Simple Map of the World. Searched on June 05 2019.
  13. Fonseca, B. M. & L. M. B. Estrela, 2015. Desmídias perifíticas de cinco lagoas do Distrito Federal, Brasil: II – Gêneros Euastrum Ehrenberg ex Ralfs, Micrasterias C. Agardh ex Ralfs e Triploceras Bailey. Hoehnea 42: 399–417.CrossRefGoogle Scholar
  14. Fonseca, B. M., L. Mendonça-Galvão, F. D. R. Sousa, L. M. A. Elmoor-Loureiro, M. B. Gomes-e-Souza, R. L. Pinto, P. Petracco, R. C. Oliveira & E. J. Lima, 2018. Biodiversity in pristine wetlands of central Brazil: a multi-taxonomic approach. Wetlands 38: 145–156.CrossRefGoogle Scholar
  15. Förster, K., 1964. Desmidiaceen aus Brasilien. 2. Teil: Bahia, Goyaz, Piauhy und Nord-Brasilien. Hydrobiologia XXIII: 321–505.CrossRefGoogle Scholar
  16. Förster, K., 1969. Amazonische Desmidieen. 1. Teil: areal Santarém. Amazoniana 1–2: 5–232.Google Scholar
  17. González Garraza, G., L. Burdman & G. Mataloni, 2019. Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs. Hydrobiologia. Scholar
  18. Guiry, M. D., 2019. AlgaeBase. World-wide electronic publication. In Guiry, M. D, Guiry, G. M. 2019. National University of Ireland, Galway. Searched on 18 January 2019.
  19. Gunz, P. & P. Mitteroecker, 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy 24: 103–109.Google Scholar
  20. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  21. Huxley, J. S., 1932. Problems of Relative Growth. The Dial Press, New York.Google Scholar
  22. Kindt, R. & R. Coe, 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, Nairobi.Google Scholar
  23. Klingenberg, C. P., M. Barluenga & A. Meyer, 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56(10): 1909–1920.CrossRefPubMedGoogle Scholar
  24. Lenzenweger, R., 1996. Desmidiaceenflora Von Österreich. Biblioteca Phycologica 101: 1–162.Google Scholar
  25. Musso, C., H. S. Miranda, A. M. V. M. Soares & S. Loureiro, 2014. Biological activity in Cerrado soils: evaluation of vegetation, fire and seasonality effects using the “bait-lamina test”. Plant Soil 383: 49–58.CrossRefGoogle Scholar
  26. Nemergut, D. R., S. K. Schmidt, T. Fukami, S. P. O’Neill, T. M. Bilinski, L. F. Stanish, J. E. Knelman, J. L. Darcy, R. C. Lynch, P. Wickey & S. Ferrenberg, 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews 77: 342–356.CrossRefPubMedGoogle Scholar
  27. Nemjová, K., J. Neustupa, J. Št’astný, P. Škaloud & J. Veselá, 2011. Species concept and morphological differentiation of strains traditionally assigned to Micrasterias truncata. Phycological Research 59: 208–220.CrossRefGoogle Scholar
  28. Neustupa, J., 2016. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales). Journal of Evolutionary Biology 29: 292–305.CrossRefPubMedGoogle Scholar
  29. Neustupa, J. & J. Šťastný, 2006. The geometric morphometric study of Central European species of the genus Micrasterias (Zygnematophyceae, Viridiplantae). Preslia 78: 253–263.Google Scholar
  30. Neustupa, J., J. Šťastný & L. Hodač, 2008. Temperature-related phenotypic plasticity in the green microalga Micrasterias rotata. Aquatic Microbial Ecology 51: 77–86.CrossRefGoogle Scholar
  31. Neustupa, J., K. Černá & J. Šťastný, 2011. The effects of aperiodic desiccation on the diversity of benthic desmid assemblages in a lowland peat bog. Biodiversity and Conservation 20: 1695–1711.CrossRefGoogle Scholar
  32. Neustupa, J., J. Veselá & J. Šťastný, 2013. Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands. Hydrobiologia 709: 159–171.CrossRefGoogle Scholar
  33. Okie, J. G., 2013. General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization. The American Naturalist 181: 421–439.CrossRefPubMedGoogle Scholar
  34. Oliveira, I. B., C. W. N. Moura & C. E. M. Bicudo, 2009. Micrasterias C. Agardh ex Ralfs (Zygnemaphophyceae) de duas Áreas de Proteção Ambiental da planície litorânea do norte da Bahia. Brasil. Revista Brasileira de Botânica 32: 213–232.Google Scholar
  35. Osserman, R., 1978. The isoperimetric inequality. Bulletin of the American Mathematical Society 84: 1182–1238.CrossRefGoogle Scholar
  36. Potapova, M. & P. B. Hamilton, 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology 43: 561–575.CrossRefGoogle Scholar
  37. Prescott, G. W., H. T. Croasdale & W. C. Vinyard, 1977. A Synopsis of North American desmids. University of Nebraska Press, Lincoln.Google Scholar
  38. R Core Development Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  39. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  40. Ribeiro, I. O., R. V. Andreoli, M. T. Kayano, T. R. Sousa, A. S. Medeiros, R. H. M. Godoi, A. F. L. Godoi, S. Duvoisin Junior, S. T. Martin & R. A. F. Souza, 2018. Biomass burning and carbon monoxide patterns in Brazil during the extreme drought years of 2005, 2010, and 2015. Environmental Pollution 243: 1008–1014.CrossRefPubMedGoogle Scholar
  41. Rohlf, F. J., 2015. TPS Series. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.
  42. Růžička, J., 1981. Die Desmidiaceen Mitteleuropas. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  43. Santos, M. A., C. E. M. Bicudo & C. W. N. Moura, 2018. Taxonomic notes on the species of the genus Micrasterias (Desmidiaceae, Conjugatophyceae) from the Metropolitan Region of Salvador, Bahia, Brazil. Check List 14: 1027–1045.CrossRefGoogle Scholar
  44. Savriama, Y., J. Neustupa & P. Klingenberg, 2010. Geometric morphometrics of symmetry and allometry in Micrasterias rotate (Zygnemaphyceae, Viridiplantae). Nova Hedwigia 136: 43–54.Google Scholar
  45. Shingleton, A., 2010. Allometry: the study of biological scaling. Nature Education Knowledge 3: 2.Google Scholar
  46. Silva, F. A. M., E. D. Assad & A. E. Evangelista, 2008. Caracterização climática do bioma Cerrado. In Sano, S. M., S. M. P. Almeida & J. F. Ribeiro (eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília: 69–87.Google Scholar
  47. Silva, L. C. R., G. D. Vale, R. F. Haidar & L. S. S. Sternberg, 2010. Deciphering earth mound origins in central Brazil. Plant and Soil 336: 3–14.CrossRefGoogle Scholar
  48. Škaloud, P., K. Nemjová, J. Veselá, K. Černá & J. Neustupa, 2011. A multilocus phylogeny of the desmid genus Micrasterias (Streptophyta): evidence for the accelerated rate of morphological evolution in protists. Molecular Phylogenetics and Evolution 61: 933–943.CrossRefPubMedGoogle Scholar
  49. Smith, R. J., 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140: 476–486.CrossRefPubMedGoogle Scholar
  50. Zelditch, M. L., D. L. Swiderski & H. D. Sheets, 2012. Geometric Morphometrics for Biologists. Academic Press, Cambridge.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo de Estudos de Ecossistemas Aquáticos, Laboratório de Biodiversidade AquáticaUniversidade Católica de BrasíliaTaguatingaBrazil
  2. 2.Faculty of Science, Department of BotanyCharles University in PraguePragueCzech Republic

Personalised recommendations