Advertisement

Hydrobiologia

, Volume 842, Issue 1, pp 101–112 | Cite as

Colonization dynamic on experimental limestone substrata: the role of encrusting epilithics favouring boring polychaetes

  • Edoardo CasoliEmail author
  • Sandra Ricci
  • Federica Antonelli
  • Carlotta Sacco Perasso
  • Giandomenico Ardizzone
  • Maria Flavia Gravina
Primary Research Paper

Abstract

Polychaetes inhabit all the marine benthic communities and play a significant role in the degradation of calcareous substrates in marine environment. Colonization dynamics of encrusting epibenthos and polychaete assemblages on limestone experimental substrates were studied over a 3-year period in a Marine Protected Area: the Underwater Archaeological Park of Baiae (central Tyrrhenian Sea). Competitive and encrusting organisms replaced the pioneer species, dominating the epilithic community, and increasing the available surface. Polychaetes increased in species number over time. Several boring specimens of the species Polydora ciliata and Dodecaceria concharum were responsible for the bioerosion of the calcareous material. The former species characterized the early stage of the succession, whereas the latter settled during the late stages, together with the nestler species Lysidice unicornis, whose boring activity has been hypothesized. Four different surface trace morphologies attributable to boring polychaetes are here reported and described. The number of the polychaete boring traces increased according to the surface covered by ascidians, barnacles, and bryozoans. The present work provides evidence regarding positive interactions between encrusting epibenthic organisms and endolithic worms.

Keywords

Boring polychaetes Epilithic community Encrusting epibenthos Polydora ciliata Dodecaceria concharum Mediterranean Sea 

Notes

Acknowledgements

Our thanks go to Daniela Silvia Pace, Daniele Ventura, Gianluca Mancini, and Andrea Belluscio for their help during this work. We acknowledge the three anonymous Reviewers for their constructive comments and suggestions.

References

  1. Antonelli, F., C. Sacco Perasso, S. Ricci & B. Davidde Petriaggi, 2015. Impact of the sipunculan Aspidosiphon muelleri Diesing, 1851 on calcareous underwater cultural heritage. International Biodeterioration & Biodegradation 100: 133–139.CrossRefGoogle Scholar
  2. Antoniadou, C., E. Voultsiadou & C. Chintiroglou, 2010. Benthic colonization and succession on temperate sublittoral rocky cliffs. Journal of Experimental Marine Biology and Ecology 382: 145–153.CrossRefGoogle Scholar
  3. Arvanitidis, C., G. Bellan, P. Drakopoulos, V. Valavanis, C. Dounas, A. Koukouras & A. Eleftheriou, 2002. Seascape biodiversity patterns along the Mediterranean and the Black Sea. Marine Ecology Progress Series 244: 139–152.CrossRefGoogle Scholar
  4. Bick, A., 2006. Polychaete communities associated with gastropod shells inhabited by the hermit crabs Clibanarius erythropus and Calcinus tubularis from Ibiza, Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 86: 83–92.CrossRefGoogle Scholar
  5. Blake, J. A. & J. D. Evans, 1973. Polydora and related genera (Polychaeta: Spionidae) as borers in mollusk shells and other calcareous substrata. The Veliger 15: 235–249.Google Scholar
  6. Bromley, R. G., 1978. Bioerosion of Bermuda reefs. Palaeogeography, Palaeoclimatology, Palaeoecology 23: 169–197.CrossRefGoogle Scholar
  7. Cámara, B., M. Álvarez de Buergo, M. Bethencourt, T. Fernández-Montblanc, M. F. La Russa, M. Ricca & R. Fort, 2017. Biodeterioration of marble in an underwater environment. Science of the Total Environment 609: 109–122.CrossRefGoogle Scholar
  8. Casoli, E., S. Ricci, A. Belluscio, M. F. Gravina & G. D. Ardizzone, 2015. Settlement and colonization of epi-endobenthic communities on calcareous substrata in an underwater archaeological site. Marine Ecology 36: 1060–1074.CrossRefGoogle Scholar
  9. Casoli, E., A. Bonifazi, G. D. Ardizzone & M. F. Gravina, 2016a. How algae influence sessile marine organisms: the tube worms case of study. Estuarine, Coastal and Shelf Science 178: 12–20.CrossRefGoogle Scholar
  10. Casoli, E., S. Ricci, F. Antonelli, C. Sacco Perasso, A. Belluscio & G. D. Ardizzone, 2016b. Impact and colonization dynamics of the bivalve Rocellaria dubia on limestone experimental panels in the submerged Roman city of Baiae (Naples, Italy). International Biodeterioration & Biodegradation 108: 9–15.CrossRefGoogle Scholar
  11. Castriota, L., M. C. Gabi, V. Zupo & G. Sunseri, 2003. Structure and trophic ecology of a population of Lysidice ninetta (Polychaeta) associated to rhodoliths off the island of Ustica (southern Tyrrhenian Sea). Biologia Marina Mediterranea 10: 517–520.Google Scholar
  12. Cocito, S., F. Ferdeghini, C. Morri & C. N. Bianchi, 2000. Patterns of bioconstruction in the cheilostome bryozoan Schizoporella errata: the influence of hydrodynamics and associated biota. Marine Ecology Progress Series 192: 153–161.CrossRefGoogle Scholar
  13. Corriero, G., M. Gherardi, A. Giangrande, C. Longo, M. Mercurio, L. Musco & C. Nonnis Marzano, 2004. Inventory and distribution of hard bottom fauna from the marine protected area of Porto Cesareo (Ionian Sea): Porifera and Polychaeta. Italian Journal of Zoology 71(3): 237–245.CrossRefGoogle Scholar
  14. Corriero, G., C. Longo, M. Mercurio, A. Marchini & A. Occhipinti Ambrogi, 2007. Porifera and Bryozoa on artificial hard bottoms in the Venice Lagoon: spatial distribution and temporal changes in the northern basin. Italian Journal of Zoology 74(1): 21–29.CrossRefGoogle Scholar
  15. Diez, M. E., N. Vazquez, P. da Cunha Lana & F. Cremonte, 2016. Biogenic calcareous growth on the ribbed mussel Aulacomya atra (Bivalvia: Mytilidae) favours polydorid boring (Polychaeta: Spionidae). Hydrobiologia 766: 349–355.CrossRefGoogle Scholar
  16. Ebbs, N. K., 1966. The coral-inhabiting polychaetes of the northern Florida reef tract. Part I. Aphroditidae, Polynoidae, Amphinomidae, Eunicidae, and Lysaretidae. Bulletin of Marine Science 16: 485–555.Google Scholar
  17. Gambi, M. C. & G. Cafiero, 2001. Functional diversity in the Posidonia oceanica ecosystem: an example with polychaete borers of the scale. Mediterranean Ecosystems. Springer, Milano: 399–405.CrossRefGoogle Scholar
  18. Giangrande, A., 1988. Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. Journal of Experimental Marine Biology and Ecology 120: 263–276.CrossRefGoogle Scholar
  19. Giangrande, A. & M. F. Gravina, 2015. Brackish-water polychaetes, good descriptors of environmental changes in space and time. Transitional Waters Bulletin 9: 42–55.Google Scholar
  20. Giangrande, A., A. L. Delos, L. Musco, M. Licciano & C. Pierri, 2003. Polychaete assemblages along a rocky shore on the South Adriatic coast (Mediterranean Sea): patterns of spatial distribution. Marine Biology 143: 1109–1116.CrossRefGoogle Scholar
  21. Giangrande, A., M. Licciano & L. Musco, 2005. Polychaetes as environmental indicators revisited. Marine Pollution Bulletin 50: 1153–1162.CrossRefGoogle Scholar
  22. Gibson, P. H., 2017. A search for trace fossils of the burrowing cirratulid polychaetes Dodecaceria fimbriata and D. concharum. Ichnos 24: 83–90.CrossRefGoogle Scholar
  23. Gravina, M. F., F. Antonelli, C. Sacco Perasso, A. Cesaretti, E. Casoli & S. Ricci, 2019. The role of polychaetes in bioerosion of submerged mosaic floors in the Underwater Archaeological Park of Baiae (Naples, Italy). Facies 65(2): 19.CrossRefGoogle Scholar
  24. Haigler, S., 1969. Boring mechanisms of Polydora websteri inhabiting Crassostrea virginica. American Zoologist 9: 821–828.CrossRefGoogle Scholar
  25. Hutchings, P. A., 2008. Role of polychaetes in bioerosion of coral substrates. In Wisshak, M. & L. Tapanila (eds), Current Developments in Bioerosion. Springer, Berlin: 249–264.CrossRefGoogle Scholar
  26. Hutchings, P. A., 2011. Bioerosion. In Hopley, D. (ed.), Encyclopedia of Modern Coral Reefs: Structure, Form and Process. Springer, Amsterdam: 139–156.CrossRefGoogle Scholar
  27. Hutchings, P. A. & M. Peyrot-Clausade, 2002. The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. Journal of Experimental Marine Biology and Ecology 269: 101–121.CrossRefGoogle Scholar
  28. Hutchings, P. A., W. E. Kiene, P. B. Cunningham & C. Donnelly, 1992. Spatial and temporal patterns of non-colonial boring organisms (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11: 23–31.CrossRefGoogle Scholar
  29. Kurt-Sahin, G. & M. E. Çinar, 2017. Distribution of Eunicidae (Annelida: Polychaeta) along the Levantine coast of Turkey, with special emphasis on alien species. Marine Biodiversity 47: 421–431.CrossRefGoogle Scholar
  30. Liu, P. J. & H. L. Hsieh, 2000. Burrow architecture of the spionid polychaete Polydora villosa in the corals Montipora and Porites. Zoological Studies Taipei 39: 47–54.Google Scholar
  31. Longo, C., F. Mastrototaro & G. Corriero, 2007. Occurrence of Paraleucilla magna (Porifera: Calcarea) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 87: 1749–1755.CrossRefGoogle Scholar
  32. Longo, C., F. Cardone, M. Mercurio, C. N. Marzano, C. Pierri & G. Corriero, 2016. Spatial and temporal distribution of the sponge fauna in the southern Italian lagoon system. Mediterranean Marine Science 17(1): 174–189.CrossRefGoogle Scholar
  33. Longo, C., F. Cardone, C. Pierri, M. Mercurio, S. Mucciolo, C. Nonnis Marzano & G. Corriero, 2017. Sponges associated with coralligenous formations along the Apulian coasts. Marine Biodiversity.  https://doi.org/10.1007/s12526-017-0744-x.CrossRefGoogle Scholar
  34. Martin, D. & T. A. Britayev, 1998. Symbiotic polychaetes: review of known species. Oceanography and Marine Biology: An Annual Review 36: 217–340.Google Scholar
  35. Marzialetti, S., L. Nicoletti & G. D. Ardizzone, 2009. The polychaete community of the Fregene artificial reef (Tyrrhenian Sea, Italy): a 20-year study (1981-2001). Zoosymposia 2: 551–566.Google Scholar
  36. Morgado, E. & M. O. Tanaka, 2001. The macrofauna associated with the bryozoan Schizoporella errata (Walters) in southeastern Brazil. Scientia Marina 65: 173–181.CrossRefGoogle Scholar
  37. Pari, N., M. Peyrot-Clausade, T. Le Campion-Alsumard, P. A. Hutchings, V. Chazottes, S. Golubic, J. Le Campion & M. F. Fontaine, 1998. Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Marine Ecology Progress Series 166: 119–130.CrossRefGoogle Scholar
  38. Pari, N., M. Peyrot-Clausade & P. A. Hutchings, 2002. Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) during 5 years of exposure. Journal of Experimental Marine Biology and Ecology 276: 109–127.CrossRefGoogle Scholar
  39. Passaro, S., M. Barra, R. Saggiomo, S. Di Giacomo, A. Leotta, H. Uhlen & S. Mazzola, 2013. Multi-resolution morpho-bathymetric survey results at the Pozzuoli-Baia underwater archaeological site (Naples, Italy). Journal of Archaeological Science 40: 1268–1278.CrossRefGoogle Scholar
  40. Pitacco, V., M. Orlando-Bonaca, B. Mavrič & L. Lipej, 2014. Macrofauna associated with a bank of Cladocora caespitosa (Anthozoa, Scleractinia) in the Gulf of Trieste (Northern Adriatic). Annales: Series Historia Naturalis 24: 1–14.Google Scholar
  41. Rodrigues, S. C., M. G. Simões, M. Kowalewski, M. A. V. Petti, E. F. Nonato, S. Martinez & C. J. del Rio, 2008. Biotic Interaction between spionid polychaetes and bouchardiid brachiopods: paleoecological, taphonomic and evolutionary implications. Acta Palaeontologica Polonica 53: 657–668.CrossRefGoogle Scholar
  42. Rodriguez, S. R., F. P. Ojeda & N. C. Inestrosa, 1993. Settlement of benthic marine invertebrates. Marine Ecology Progress Series 97: 193–207.CrossRefGoogle Scholar
  43. Russo, G. F., R. Di Donato & F. Di Stefano, 2008. Gli habitat sottomarini delle coste della Campania. Biologi Italiani 6: 77–86.Google Scholar
  44. Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.CrossRefGoogle Scholar
  45. Somaschini, A., M. F. Gravina & G. D. Ardizzone, 1994. Polychaete depth distribution in a Posidonia oceanica bed (rhizome and matte strata) and neighbouring soft and hard bottoms. Marine Ecology 15: 133–151.CrossRefGoogle Scholar
  46. Somaschini, A., G. D. Ardizzone & M. F. Gravina, 1997. Long-term changes in the structure of a polychaete community on artificial habitats. Bulletin of Marine Science 60: 460–466.Google Scholar
  47. Torres, A. C., P. Veiga, M. Rubal & I. Sousa-Pinto, 2015. The role of annual macroalgal morphology in driving its epifaunal assemblages. Journal of Experimental Marine Biology and Ecology 464: 96–106.CrossRefGoogle Scholar
  48. Valentine, P. C., M. R. Carman, D. S. Blackwood & E. J. Heffron, 2007. Ecological observations on the colonial ascidian Didemnum sp. in a New England tide pool habitat. Journal of Experimental Marine Biology and Ecology 342: 109–121.CrossRefGoogle Scholar
  49. Vinn, O., 2009. The ultrastructure of calcareous cirratulid (Polychaeta, Annelids) tubes. Estonian Journal of Earth Sciences 58(2): 153–156.CrossRefGoogle Scholar
  50. Walters, L. J. & D. S. Wethey, 1996. Settlement and early post-settlement survival of sessile marine invertebrates on topographically complex surfaces: the importance of refuge dimension and adult morphology. Marine Ecology Progress Series 137: 161–171.CrossRefGoogle Scholar
  51. Wisshak, M. & C. Neumann, 2006. A symbiotic association of a boring polychaete and an echinoid from the Late Cretaceous of Germany. Acta Palaeontologica Polonica 51: 589–597.Google Scholar
  52. Zanol, J. & P. C. Paiva, 2000. Eunice and Palola (Eunicidae: Polychaeta) from the eastern brazilian coast (13°00′–22°30′S). Bulletin of Marine Science 67: 449–463.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental BiologySapienza University of RomeRomeItaly
  2. 2.Biology LaboratoryIstituto Superiore per la Conservazione e per il Restauro (ISCR)RomeItaly
  3. 3.Department of Innovation of Biological Systems, Food and Forestry (DIBAF)Tuscia UniversityViterboItaly
  4. 4.Istituto Superiore per la Conservazione e per il Restauro (ISCR)RomeItaly
  5. 5.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
  6. 6.Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa)RomeItaly

Personalised recommendations