Skip to main content
Log in

Genetic variation of a freshwater snail Hydrobioides nassa (Gastropoda: Bithyniidae) in Thailand examined by mitochondrial DNA sequences

  • FRESHWATER MOLLUSCS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Thailand, there are at least ten species of freshwater snails of the family Bithyniidae, most of which can act as intermediate hosts of veterinary and medically important parasites. The genetic variation, geographical distribution, and taxonomic status of some species are obscure, including for Hydrobioides nassa. Thus, this study aims to explore the genetic variation and distribution of H. nassa in north, west, and central Thailand. We collected 264 specimens of H. nassa from 46 localities in 16 provinces using mitochondrial cytochrome c oxidase subunit I (COI) and 16S ribosomal DNA sequences to determine variation. Genetic diversity of H. nassa is relatively high, with 65 and 11 haplotypes of COI and 16S rDNA observed, respectively. The phylogenetic tree and haplotype network analyses classified H. nassa into three haplogroups (haplogroup I–III). Haplogroup I and II belonged to clade A, whereas haplogroup III belonged to clade B. Interestingly, haplogroup III or clade B contained the specimens from Yom river basin in Phrae province, which was the most genetically distinct. Thus, this study suggests that H. nassa in Thailand is a complex of phenotypically similar but genetically distinct species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews, R. H., P. Sithithaworn & T. N. Petney, 2008. Opisthorchis viverrini: an underestimated parasite in world health. Trends in Parasitology 24: 497–501.

    Article  Google Scholar 

  • Bandelt, H. J., P. Forster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.

    Article  CAS  Google Scholar 

  • Brandt, R. A. M., 1974. The non-marine aquatic Mollusca of Thailand. Arch Mollusken 105: 1–423.

    Google Scholar 

  • Chai, J. Y., K. D. Murrell & A. J. Lymbery, 2005. Fish-borne parasitic zoonoses: status and issues. International Journal for Parasitology 35: 1233–1254.

    Article  Google Scholar 

  • Chantima, K., J. Y. Chai & C. Wongsawad, 2013. Echinostoma revolutum: freshwater snails as the second intermediate hosts in Chiang Mai, Thailand. The Korean Journal of Parasitology 51: 183–189.

    Article  Google Scholar 

  • Chitramvong, Y. P., 1992. The Bithyniidae (Gastropoda: Prosobranchia) of Thailand: comparative external morphology. Malacological Review 25: 38.

    Google Scholar 

  • Chitsulo, L., D. Engels, A. Montresor & L. Savioli, 2000. The global status of schistosomiasis and its control. Acta Tropica 77: 41–51.

    Article  CAS  Google Scholar 

  • Excoffier, L. & H. E. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  PubMed  Google Scholar 

  • Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series. Information Retrieval Ltd., London: 1979–2000.

  • Kiatsopit, N., P. Sithithaworn, T. Boonmars, S. Tesana, A. Chanawong, W. Saijuntha, T. N. Petney & R. H. Andrews, 2011. Genetic markers for studies on the systematics and population genetics of snails, Bithynia spp., the first intermediate hosts of Opisthorchis viverrini in Thailand. Acta Tropica 118: 136–141.

    Article  Google Scholar 

  • Kiatsopit, N., P. Sithithaworn, W. Saijuntha, T. N. Petney & R. H. Andrews, 2013. Opisthorchis viverrini: Implications of the systematics of first intermediate hosts, Bithynia snail species in Thailand and Lao PDR. Infection, Genetics and Evolution 14: 313–319.

    Article  Google Scholar 

  • Kiatsopit, N., P. Sithithaworn, K. Kopolrat, R. H. Andrews & T. N. Petney, 2014. Seasonal cercarial emergence patterns of Opisthorchis viverrini infecting Bithynia siamensis goniomphalos from Vientiane Province, Lao PDR. Parasites & Vectors 7: 551.

    Article  Google Scholar 

  • Kiatsopit, N., P. Sithithaworn, K. Kopolrat, J. Namsanor, R. H. Andrews & T. N. Petney, 2016. Trematode diversity in the freshwater snail Bithynia siamensis goniomphalos sensu lato from Thailand and Lao PDR. Journal of Helminthology 90: 312–320.

    Article  CAS  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

    Article  CAS  Google Scholar 

  • Kulsantiwong, J., S. Prasopdee, J. Ruangsittichai, W. Ruangjirachuporn, T. Boonmars, V. Viyanant, P. Pierossi, P. D. Hebert & S. Tesana, 2013. DNA barcode identification of freshwater snails in the family Bithyniidae from Thailand. PLoS ONE 8: e79144.

    Article  CAS  Google Scholar 

  • Kulsantiwong, J., S. Prasopdee, S. Piratae, P. Khampoosa, C. Thammasiri, A. Suwannatrai, T. Boonmars, V. Viyanant, J. Ruangsitichai, P. Tarbsripair & S. Tesana, 2015. Trematode infection of freshwater snail, family Bithyniidae in Thailand. Southeast Asian Journal of Tropical Medicine Public Health 46: 396–405.

    Google Scholar 

  • Kulsantiwong, J., S. Prasopdee, N. Labbunruang, M. Chaiyasaeng & S. Tesana, 2017. Habitats and trematode infection of Bithynia siamensis gonimphalos in Udon Thani province, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 48: 975–982.

    Google Scholar 

  • Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

    Article  CAS  Google Scholar 

  • Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson & D. G. Higgins, 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  CAS  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    Article  CAS  Google Scholar 

  • Nadler, S. A., 1995. Microevolution and the genetic structure of parasite populations. The Journal of Parasitology 81: 395–403.

    Article  CAS  Google Scholar 

  • Nadler, S. A. & G. P. DE Leon, 2011. Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138: 1688–1709.

    Article  CAS  Google Scholar 

  • Namsanor, J., P. Sithithaworn, K. Kopolrat, N. Kiatsopit, O. Pitaksakulrat, S. Tesana, R. H. Andrews & T. N. Petney, 2015. Seasonal transmission of Opisthorchis viverrini sensu lato and a Lecithodendriid trematode species in Bithynia siamensis goniomphalos snails in Northeast Thailand. The American Journal of Tropical Medicine and Hygiene 93: 87–93.

    Article  Google Scholar 

  • Na-Nakorn, U., W. Kamonrat & T. Ngamsiri, 2004. Genetic diversity of walking catfish, Clarias macrocephalus, in Thailand and evidence of genetic introgression from introduced farmed C. gariepinus. Aquaculture 240: 145–163.

    Article  Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 23: 341–369.

    CAS  Google Scholar 

  • Nei, M. & S. Kumar, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.

    Google Scholar 

  • Nylander, J. A. A., 2008. MrModeltest v2.3 Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University.

  • Palumbi, S. R., A. P. Martin, S. Romano, W. O. MacMillan, L. Stice & G. Grabowski, 2002. The Simple Fool’s Guide to PCR version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu.

  • Perez, K. E., R. L. Werren, C. A. Lynum, L. A. Hartman, G. Majores & R. A. Cole, 2016. Genetic structure of faucet snail, Bithynia tentaculata populations in North America, based on microsatellite markers. Freshwater Mollusk Biology and Conservation 19: 56–69.

    Article  Google Scholar 

  • Pramual, P. & S. Pangjanda, 2015. Effects of habitat specialization on population genetic structure of black fly Simulium weji Takaoka (Diptera: Simuliidae). Journal of Asia-Pacific Entomology 18: 33–37.

    Article  Google Scholar 

  • Prasankok, P. & S. Panha, 2011. Genetic structure of the common terrestrial pulmonate snail, Cryptozona siamensis (Pfeiffer, 1856), in Thailand. Biochemical Systematics and Ecology 39: 449–457.

    Article  CAS  Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rambaut, A., 2012. FigTree v.1.4.2: Tree Figure Drawing Tool. Available online at: http://tree.bio.ed.ac.uk/software/figtree

  • Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2014. Tracer v1.6. Available online at: http://beast.bio.ed.ac.uk/Tracer

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    Article  Google Scholar 

  • Saijuntha, W., P. Sithithaworn, S. Wongkham, T. Laha, V. Pipitgool, S. Tesana, N. B. Chilton, T. N. Petney & R. H. Andrews, 2007. Evidence of a species complex within the food-borne trematode Opisthorchis viverrini and possible co-evolution with their first intermediate hosts. International Journal for Parasitology 37: 695–703.

    Article  Google Scholar 

  • Saijuntha, W., S. Sedlak, T. Agatsuma, K. Jongsomchai, W. Pilap, W. Kongbuntad, W. Tawong, W. Suksavate, T. N. Petney & C. Tantrawatpan, 2019. Genetic structure of the red-spotted tokay gecko, Gekko gecko Linnaeus, 1758 (Squamata: Gekkonidae) in mainland Southeast Asia. Asian Herpetological Research. https://doi.org/10.16373/j.cnki.ahr.180066.

    Article  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Sri-aroon, P., P. Butraporn, J. Limsoomboon, M. Kaewpoolsri, Y. Chusongsang, P. Charoenjai, P. Chusongsang, S. Numnuan & S. Kiatsiri, 2007. Freshwater mollusks at designated areas in eleven provinces of Thailand according to the water resource development projects. Southeast Asian Journal of Tropical Medicine and Public Health 38: 294–301.

    Google Scholar 

  • Upatham, E. S., S. Sornmani, V. Kitikoon, C. Lohachit & J. B. Burch, 1983. Identification key for the fresh- and brackish-water snails of Thailand. Malacological Review 16: 107–132.

    Google Scholar 

  • Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. program (Grant No. PHD/0095/2558) to Naruemon Bunchom. Thammasat University financial supports this project to Chairat Tantrawatpan. Takeshi Agatsuma was supported by Grants-in-Aid for Scientific Research (B) (26305011). The authors would like to thank the Mahasarakham University for financially supporting Weerachai Saijuntha, enabling him to present this work in the first FMCS International Freshwater Mollusk Meeting 2018, Verbania, Italy. The authors would also like to thank Dr. Wittaya Tawong for BI analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weerachai Saijuntha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Manuel P. M. Lopes-Lima, Nicoletta Riccardi, Maria Urbanska & Ronaldo G. Sousa / Biology and Conservation of Freshwater Molluscs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunchom, N., Saijuntha, W., Pilap, W. et al. Genetic variation of a freshwater snail Hydrobioides nassa (Gastropoda: Bithyniidae) in Thailand examined by mitochondrial DNA sequences. Hydrobiologia 848, 2965–2976 (2021). https://doi.org/10.1007/s10750-019-04013-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04013-2

Keywords

Navigation