Skip to main content
Log in

Raphidiopsis mediterranea (Nostocales) exhibits a flexible growth strategy under light and nutrient fluctuations in contrast to Planktothrix agardhii (Oscillatoriales)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Raphidiopsis mediterranea is a freshwater cyanobacterium that forms toxic blooms in eutrophic water bodies. Factors controlling its proliferation have not been explored in detail. We investigated R. mediterranea autecology by (i) analyzing its dynamics in a hypertrophic shallow lake dominated by Planktothrix agardhii (Oscillatoriales) and its relationship with environmental factors; and (ii) studying the effect of light intensity and phosphate availability on R. mediterranea isolates growing in mono or in co-cultures with P. agardhii. The redundancy analysis demonstrated that water temperature, light, and phosphate concentrations were important driving factors for the seasonal succession of the two species. When grown together with P. agardhii, R. mediterranea growth was strongly promoted under the highest light intensity treatment. On the other hand, in monoalgal cultures under phosphorus starvation, both strains exhibited a significant increase in total alkaline phosphatase activity, and changes in the expression of homologs to phoA-like and phoD genes (members of the Pho regulon). However, R. mediterranea showed higher phosphatase activity than P. agardhii, suggesting greater tolerance to phosphate limitation. Taken together, we conclude that physiological features of R. mediterranea play an important role in the coexistence with P. agardhii under environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera, A., L. Aubriot, R. O. Echenique, G. L. Salerno, B. M. Brena, M. Pírez & S. Bonilla, 2017. Synergistic effects of nutrients and light favor Nostocales over non heterocystous cyanobacteria. Hydrobiologia 794: 241–255.

    Article  CAS  Google Scholar 

  • Aguilera, A., E. B. Gómez, J. Kaštovský, R. O. Echenique & G. L. Salerno, 2018. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57: 130–146.

    Article  Google Scholar 

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • Ammar, M., K. Comte, T. D. C. Tran & M. E. Bour, 2014. Initial growth phases of two bloom-forming cyanobacteria (Cylindrospermopsis raciborskii and Planktothrix agardhii) in monocultures and mixed cultures depending on light and nutrient conditions. Annales de Limnologie – International Journal of Limnology 50: 231–240.

    Article  Google Scholar 

  • Association, American Public Health, 1985. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Aubriot, L. & S. Bonilla, 2012. Rapid regulation of phosphate uptake in freshwater cyanobacterial blooms. Aquatic Microbial Ecology 67: 251–263.

    Article  Google Scholar 

  • Aubriot, L. & S. Bonilla, 2018. Regulation of phosphate uptake reveals cyanobacterial bloom resilience to shifting N: P ratios. Freshwater Biology 63: 318–329.

    Article  CAS  Google Scholar 

  • Aubriot, L., S. Bonilla & G. Falkner, 2011. Adaptive phosphate uptake behaviour of phytoplankton to environmental phosphate fluctuations. FEMS Microbiology Ecology 77: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Bai, F., R. Liu, Y. Yang, X. Ran, J. Shi & Z. Wu, 2014. Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium, Cylindrospermopsis raciborskii. Harmful Algae 39: 112–120.

    Article  CAS  Google Scholar 

  • Bauzá, L., A. Aguilera, R. O. Echenique, D. Andrinolo & L. Giannuzzi, 2014. Application of hydrogen peroxide to the control of eutrophic lake systems in laboratory assays. Toxins 6: 2657–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolch, C. J. S. & S. I. Blackburn, 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology 8: 5–13.

    Article  Google Scholar 

  • Bonilla, S., L. Aubriot, M. C. S. Soares, M. Gonzalez-Piana, A. Fabre, V. L. M. Huszar, M. Lurling, D. Antoniades, J. Padisak & C. Kruk, 2012. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology 79: 594–607.

    Article  CAS  PubMed  Google Scholar 

  • Burford, M. A., J. Beardall, A. Willis, P. T. Orr, V. F. Magalhaes, L. M. Rangel, S. M. F. O. E. Azevedo & B. A. Neilan, 2016. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54: 44–53.

    Article  PubMed  Google Scholar 

  • Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46: 1394–1407.

    Article  CAS  PubMed  Google Scholar 

  • Catherine, A., C. Quiblier, C. Yéprémian, P. Got, A. Groleau, B. Vinçon-Leite, C. Bernard & M. Troussellier, 2008. Collapse of a Planktothrix agardhii perennial bloom and microcystin dynamics in response to reduced phosphate concentrations in a temperate lake. FEMS Microbiology Ecology 65: 61–73.

    Article  CAS  PubMed  Google Scholar 

  • Díaz, R. A. & I. Mormeneo, 2002. Zonificación del clima de la región pampeana mediante análisis de conglomerados por consenso. Revista Argentina Agrometeorología 2: 125–131.

    Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Gomez-Garcia, M. R., F. Fazeli, A. Grote, A. R. Grossman & D. Bhaya, 2013. Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. Journal of Bacteriology 195: 3309–3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harke, M. J., D. L. Berry, J. W. Ammerman & C. J. Gobler, 2012. Molecular response of the bloom-forming cyanobacterium, Microcystis aeruginosa, to phosphorus limitation. Microbial Ecology 63: 188–198.

    Article  CAS  PubMed  Google Scholar 

  • Hašler, P., A. Poulíčková & S. Vařeková, 2003. Comparative studies on two strains of the genus Planktothrix (Cyanophyta, Cyanoprokaryota). Algological Studies 108: 31–43.

    Google Scholar 

  • Havens, K. E., R. T. James, T. L. East & V. H. Smith, 2003. N: P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution 122: 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, U. Pollingher Kirschtel & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • ISO, 1992. Water quality measurement of biochemical parameters spectrophotometric determination of chlorophyll-a concentration. International Organization for Standardization, Geneva: 1–6.

    Google Scholar 

  • Izaguirre, I., M. L. Sánchez, M. R. Schiaffino, I. O’Farrell, P. Huber, N. Ferrer, J. Zunino, L. Lagomarsino & M. Mancini, 2015. Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? Hydrobiologia 752: 47–64.

    Article  Google Scholar 

  • Kokociński, M., K. Stefaniak, J. Mankiewicz-Boczek, K. Izydorczyk & J. Soininen, 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). European Journal of Phycology 45: 365–374.

    Article  CAS  Google Scholar 

  • Kurmayer, R. & M. Gumpenberger, 2006. Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Molecular Ecology 15: 3849–3861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurmayer, R., L. Deng & E. Entfellner, 2016. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54: 69–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Martínez, O. R., M. A. Hurtado & J. E. Giménez, 2006. Caracterización ambiental de los humedales costeros del Río de la Plata. Provincia de Buenos Aires, Argentina. Revista UnG – Geociências 5: 55–64.

    Google Scholar 

  • McAlice, B., 1971. Phytoplankton sampling with the Sedgwick-Rafter cell. Limnology and Oceanography 16: 16–28.

    Article  Google Scholar 

  • McGregor, G. B., B. C. Sendall, L. T. Hunt & G. K. Eaglesham, 2011. Report of the cyanotoxins cylindrospermopsin and deoxy-cylindrospermopsin from Raphidiopsis mediterranea Skuja (Cyanobacteria/Nostocales). Harmful Algae 10: 402–410.

    Article  CAS  Google Scholar 

  • Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla & R. A. Relyea, 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution 20: 685–692.

    Article  PubMed  Google Scholar 

  • Moustaka-Gouni, M., K. A. Kormas, P. Polykarpou, S. Gkelis, D. C. Bobori & E. Vardaka, 2010. Polyphasic evaluation of Aphanizomenon issatschenkoi and Raphidiopsis mediterranea in a Mediterranean lake. Journal of Plankton Research 32: 927–936.

    Article  CAS  Google Scholar 

  • Namikoshi, M., T. Murakami, M. F. Watanabe, T. Oda, J. Yamada, S. Tsujimura, H. Nagai & S. Oishi, 2003. Simultaneous production of homoanatoxin-a, anatoxin-a, and a new non-toxic 4-hydroxyhomoanatoxin-a by the cyanobacterium Raphidiopsis mediterranea Skuja. Toxicon 42: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Nixdorf, B., U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes – an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.

    Article  Google Scholar 

  • Orchard, E. D., E. A. Webb & S. T. Dyhrman, 2009. Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environmental Microbiology 11: 2400–2411.

    Article  CAS  PubMed  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65: 995–1010.

    Article  CAS  PubMed  Google Scholar 

  • Pierangelini, M., S. Stojkovic, P. T. Orr & J. Beardall, 2015. Photo-acclimation to low light – changes from growth to antenna size in the cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 46: 11–17.

    Article  CAS  Google Scholar 

  • Pinto, F., C. C. Pacheco, D. Ferreira, P. Moradas-Ferreira & P. Tamagnini, 2012. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLOS ONE 7: e34983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rzymski, P. & B. Poniedzialek, 2014. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. Water Research 66: 320–337.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. M. Mur & H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Article  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.

    Article  Google Scholar 

  • Shafik, H. M., L. Vörös, P. Sprőber, M. Présing & A. W. Kovács, 2003. Some special morphological features of Cylindrospermopsis raciborskii in batch and continuous cultures. Hydrobiologia 506: 163–167.

    Article  Google Scholar 

  • Shen, H. & L. Song, 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592: 475–486.

    Article  CAS  Google Scholar 

  • Tartari, G. A., & R. Mosello, 1970. Metodologie analitiche e controlli di qualitá nel laboratorio chimico dell’istituto Italiano di Idrobiología. Doc. Dell’istituto Ital. Hidrobiol. No. 60 28048 Verbania Pallanza: 57–60.

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Biometris, Wageningen.

  • Toporowska, M., B. Pawlik-Skowronska & R. Kalinowska, 2016. Mass development of diazotrophic cyanobacteria (Nostocales) and production of neurotoxic anatoxin-a in a Planktothrix (Oscillatoriales) dominated temperate lake. Water Air and Soil Pollution 227: 321.

    Article  CAS  Google Scholar 

  • Utermöhl, M., 1958. Zur Vervollkommung der quantitativen phytoplankton methodik. Mitteilungen Internationale Vereinigung Limnologie 9: 1–38.

    Google Scholar 

  • Wilk-Woźniak, E., W. Solarz, K. Najberek & A. Pociecha, 2016. Alien cyanobacteria: an unsolved part of the “expansion and evolution” jigsaw puzzle? Hydrobiologia 764: 65–79.

    Article  Google Scholar 

  • Xiao, M., A. Willis & M. A. Burford, 2017. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae 62: 84–93.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y. & H. Nakahara, 2009. Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond. Limnology 10: 185–193.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET, Universidad Nacional de Mar del Plata (EXA793/17) and FIBA, Argentina. We thank María José Cherrez, Mónica Tatiana López, and Hilda Palacio for assistance in field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela L. Salerno.

Additional information

Handling editor: David Philip Hamilton

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Supplementary material 2 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera, A., Aubriot, L., Echenique, R.O. et al. Raphidiopsis mediterranea (Nostocales) exhibits a flexible growth strategy under light and nutrient fluctuations in contrast to Planktothrix agardhii (Oscillatoriales). Hydrobiologia 839, 145–157 (2019). https://doi.org/10.1007/s10750-019-04002-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04002-5

Keywords

Navigation