Skip to main content
Log in

Linking habitat to density-dependent population regulation: How spawning gravel availability affects abundance of juvenile salmonids (Salmo trutta and Salmo salar) in small streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Rivers with abundant spawning gravel may produce more fry of anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar); however, spawning gravel does not provide suitable shelter to parr, suggesting an optimization problem for spawning habitat in streams. This hypothesis was tested on 40 small spawning streams with anadromous brown trout and Atlantic salmon in western Norway. Juvenile salmonid densities were estimated from samples counted during backpack electrofishing surveys and the available habitat was visually surveyed while walking upstream through the rivers. Consistent with predictions, fry densities were positively related to availability of spawning gravel. However, a second-order polynomial was determined to provide an improved fit (ΔAIC = |8.02|), suggesting a polynomial relationship between the amount of spawning habitat and parr. Our results demonstrate that the abundance of parr strongly depend on gravel avilability and seems to be maximized at 20% to 40% gravel coverage. Beyond ca. 40%, parr mortality becomes density dependent, likely owing to predation and competition for shelter, and below ca. 20% the density-dependent mortality of fry will limit parr numbers. These results should be considered when enhancing or restoring the productivity of spawning streams for anadromous salmonids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson, L. C. & J. D. Reynolds, 2017. Habitat features mediate selective consumption of salmon by bears. Canadian Journal of Fisheries and Aquatic Sciences 75: 955–963.

    Article  Google Scholar 

  • Armstrong, J. D., P. S. Kemp, G. J. A. Kennedy, M. Ladle & N. J. Milner, 2003. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research 62: 143–170.

    Article  Google Scholar 

  • Barlaup, B. T., S. E. Gabrielsen, H. Skoglund & T. Wiers, 2008. Addition of spawning gravel: a means to restore spawning habitat of Atlantic salmon (Salmo salar L.), and Anadromous and resident brown trout (Salmo trutta L.) in regulated rivers. River Research and Applications 24: 543–550.

    Article  Google Scholar 

  • Barlaup, B. T., K. W. Vollset, U. Pulg, S.-E. Gabrielsen, H. Skoglund, E. S. Normann & T. Wiers, B. Skår, G. B. Lehmann, G. Velle, 2015. Vosso Områdetilnærming—Sluttrapport. LFI-rapport 244. NORCE LFI Bergen. Technical report. ISSN-1892-889.

  • Beechie, T. J., D. A. Sear, J. D. Olden, G. P. Pess, J. M. Buffington, H. Moir, P. Roni & M. M. Pollock, 2010. Process-based principles for restoring river ecosystems. BioScience 60: 209–222.

    Article  Google Scholar 

  • Bohlin, T., S. Hamrin, T. G. Heggberget, G. Rasmussen & S. J. Saltveit, 1989. Electrofishing: theory and practice with special emphasis on salmonids. Hydrobiologia 173: 9–43.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Borsányi, P., K. Alfredsen, A. Harby, O. Ugedal & C. Kraxner, 2004. A meso-scale habitat classification method for production modelling of Atlantic salmon in Norway. Hydroécologie Appliquée 14: 119–138.

    Article  Google Scholar 

  • Braun-Blanqet, J., 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, New York: 865.

    Google Scholar 

  • Childress, E. S., J. D. Allan & P. B. McIntyre, 2014. Nutrient subsidies from iteroparous fish migrations can enhance stream productivity. Ecosystems 17: 522–534.

    Article  CAS  Google Scholar 

  • DeFilippo, L. B., D. E. Schindler, J. L. Carter, T. E. Walsworth, T. J. Cline, W. A. Larson & T. Buehrens, 2018. Associations of stream geomorphic conditions and prevalence of alternative reproductive tactics among sockeye salmon populations. Journal of Evolutionary Biology 31: 239–253.

    Article  CAS  PubMed  Google Scholar 

  • Egglishaw, H. J. & P. E. Shackley, 1977. Growth, survival and production of juvenile salmon and trout in a Scottish stream, 1966–75. Journal of Fish Biology 11: 647–672.

    Article  Google Scholar 

  • Einum, S., 2005. Salmonid population dynamics: stability under weak density dependence? Oikos 110: 630–633.

    Article  Google Scholar 

  • Einum, S. & K. H. Nislow, 2005. Local-scale density-dependent survival of mobile organisms in continuous habitats: an experimental test using Atlantic salmon. Oecologia 143: 203–210.

    Article  PubMed  Google Scholar 

  • Einum, S., L. Sundt-Hansen & K. H. Nislow, 2006. The partitioning of density-dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos 113: 489–496.

    Article  Google Scholar 

  • Einum, S., K. H. Nislow, J. D. Reynolds & W. J. Sutherland, 2008. Predicting population responses to restoration of breeding habitat in Atlantic salmon. Journal of Applied Ecology 45: 930–938.

    Article  Google Scholar 

  • Elliott, J. M., 1993. A 25-year study of production of juvenile sea-trout, Salmo trutta, in an English Lake District stream. Canadian Special Publication of Fisheries and Aquatic Sciences, pp. 109–122.

  • Elliot, J. M., 1994. Quantitative Ecology and the Brow Trout. Oxford University Press, Oxford.

    Google Scholar 

  • Elliott, J. M., 2001. The relative role of density in the stock-recruitment relationship of salmonids. Stock, recruitment and reference points: assessment and management of Atlantic salmon, p. 25.

  • Finstad, A. G., S. Einum, T. Forseth & O. Ugedal, 2007. Shelter availability affects behaviour, size-dependent and mean growth of juvenile Atlantic salmon. Freshwater Biology 52: 1710–1718.

    Article  Google Scholar 

  • Fausch, K. D. & T. G. Northcote, 1992. Large woody debris and salmonid habitat in a small coastal British Columbia stream. Canadian Journal of Fisheries and Aquatic Sciences 49: 682–693.

    Article  Google Scholar 

  • Fjeldstad, H.-P., B. T. Barlaup, M. Stickler, S.-E. Gabrielsen & K. Alfredsen, 2012. Removal of weirs and the influence on physical habitat for salmonids in a norwegian river. River Research and Applications 28: 753–763.

    Article  Google Scholar 

  • Foldvik, A., S. Einum, A. G. Finstad & O. Ugedal, 2017. Linking watershed and microhabitat characteristics: effects on production of Atlantic salmonids (Salmo salar and Salmo trutta). Ecology of Freshwater Fish 26: 260–270.

    Article  Google Scholar 

  • Forseth, T. & E. Forsgren (ed.), 2008. El-fiskemetodikk – Gamle problemer og nye utfordringer. NINA Rapport 488. 74s. Technical report. Trondheim.

  • Forseth, T., A. Harby, O. Ugedal, U. Pulg, H.-P. Fjeldstad, G. Robertsen, B. T. Barlaup, K. Alfredsen, H. Sundt, S. J. Saltveit, H. Skoglund, E. Kvingedal, L. Sundt-Hansen, A. G. Finstad, S. Einum & J. V. Arnekleiv, 2013. Handbook of environmental design in regulated salmon rivers. Norwegian Institute for Nature Research. (ISBN 978-82-426-2589-2), Trondheim.

  • Hauer, C. & U. Pulg, 2018. The non-fluvial nature of Western Norwegian rivers and the implications for channel patterns and sediment composition. Catena 171: 83–98.

    Article  Google Scholar 

  • Hauer, C., G. Unfer, M. Tritthart & H. Habersack, 2011. Effects of stream channel morphology, transport processes and effective discharge on salmonid spawning habitats. Earth Surface Processes and Landforms 36: 672–685.

    Article  Google Scholar 

  • Hauer, C., P. Leitner, G. Unfer, U. Pulg, H. Habersack & W. Graf, 2018. The role of sediment and sediment dynamics in the aquatic environment. In Schmutz, S. & J. Sendzimir (eds), Riverine Ecosystem Management - Science for Governing Towards a Sustainable Future. Springer, New York.

    Google Scholar 

  • Hearn, W. E., 1987. Interspecific competition and habitat segregation among stream-dwelling trout and salmon: a review. Fisheries 12: 24–31.

    Article  Google Scholar 

  • Hedger, R. D., O. H. Diserud, O. T. Sandlund, L. Saksgård, O. Ugedal & G. Bremset, 2018. Bias in estimates of electrofishing capture probability of juvenile Atlantic salmon. Fisheries Research 208: 286–295.

    Article  Google Scholar 

  • Hobbs, R. J. & D. A. Norton, 1996. Towards a conceptual framework for restoration ecology. Restoration Ecology 4: 93–110.

    Article  Google Scholar 

  • Isaak, D. J., R. F. Thurow, B. E. Rieman & J. B. Dunham, 2007. Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity. Ecological Applications 17: 352–364.

    Article  PubMed  Google Scholar 

  • Jonsson, B. & N. Jonsson, 2011. Ecology of Atlantic Salmon and Brown Trout. Habitat as a Template for Life Histories. Springer, New York.

    Book  Google Scholar 

  • Jonsson, N., B. Jonsson & L. P. Hansen, 1998. The relative role of density-dependent and density-independent survival in the life cycle of Atlantic salmon Salmo salar. Journal of Animal Ecology 67: 751–762.

    Article  Google Scholar 

  • Jonsson, B., N. Jonsson & O. Ugedal, 2011. Production of juvenile salmonids in small Norwegian streams is affected by agricultural land use. Freshwater Biology 56: 2529–2542.

    Article  Google Scholar 

  • Kennard, M. J., B. J. Pusey, B. D. Harch, E. Dore & A. H. Arthington, 2006. Estimating local stream fish assemblage attributes: sampling effort and efficiency at two spatial scales. Marine and Freshwater Research 57: 635–653.

    Article  Google Scholar 

  • Klemetsen, A., P. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O’Connell & E. Mortensen, 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.

    Article  Google Scholar 

  • Le Cren, E. D., 1973. The population dynamics of young trout (Salmo trutta) in relation to density and territorial behaviour. Conseil Permanent International Pour l’Exploration de la Mer 164: 241–246.

    Google Scholar 

  • Lobón-Cerviá, J., 2006. Instability of stream salmonid population dynamics under strong environmental limitations - a reply. Oikos 114: 376–380.

    Article  Google Scholar 

  • Lobón-Cerviá, J. & E. Mortensen, 2006. Two-phase self-thinning in stream-living juveniles of lake-migratory brown trout Salmo trutta L. Compatibility between linear and non-linear patterns across populations? Oikos 113: 412–423.

    Article  Google Scholar 

  • Louhi, P., A. Mäki-Petäys & J. Erkinaro, 2008. Spawning habitat of Atlantic salmon and brown trout: general criteria and intragravel factors. River Research and Applications 24: 330–339.

    Article  Google Scholar 

  • Milner, N. J., J. M. Elliott & J. D. Armstrong, 2003. The natural control of salmon and trout populations in streams. Fisheries Research 62: 111–125.

    Article  Google Scholar 

  • Moir, H. J., C. N. Gibbins, C. Soulsby & A. F. Youngson, 2005. PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: testing the influence of habitat suitability indices on model output. River Research and Applications 21: 1021–1034.

    Article  Google Scholar 

  • Montgomery, D. R., E. M. Beamer, G. R. Pess & T. P. Quinn, 1999. Channel type and salmonid spawning distribution and abundance. Canadian Journal of Fisheries and Aquatic Sciences 56: 377–387.

    Article  Google Scholar 

  • Mortensen, E., 1977. The population dynamics of young trout (Salmo trutta L.) in a Danish brook. Journal of Fish Biology 10: 23–33.

    Article  Google Scholar 

  • O’Connor, W. C. K. & T. E. Andrew, 1998. The effects of siltation on Atlantic salmon, Salmo salar L., embryos in the River Bush. Fisheries Management and Ecology 5: 393–401.

    Article  Google Scholar 

  • Oksanen, J. F., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, E. Szoecs & H. Wagner, 2018. vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan.

  • Pedersen, M. L., E. A. Kristensen, B. Kronvang & H. Thodsen, 2009. Ecological effects of re-introduction of salmonid spawning gravel in lowland Danish streams. River Reserach and Applications 25: 626–638.

    Article  Google Scholar 

  • Pulg, U., B. T. Barlaup, S.-E. Gabrielsen & H. Skoglund, 2011. Sjoaurebekker i Bergen og omegn. LFI-rapport nr. 181, NORCE LFI, Bergen.

  • Pulg, U., B. T. Barlaup, K. Sternecker, L. Trepl & G. Unfer, 2013. Restoration of spawning habitats of brown trout (Salmo trutta) in a regulated chalk stream. River Reserach and Applications 29: 172–182.

    Article  Google Scholar 

  • Pulg, U., B. T. Barlaup, H. Skoglund, G. Velle, S. E. Gabrielsen, S. Stranzl, E.E. Olsen, G. Lehmann, T. Wiers, B. Skår, E.S . Nordmann, H.-P. Fjeldstad & F. Kroglund, 2018. Tiltakshåndbok for bedre fysisk vannmiljø: God praksis ved miljøforbedrende tiltak i elver og bekker. NORCE LFI rapport 296. NORCE LFI Bergen.

  • R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Rubin, J. F., C. Glimsäter & T. Jarvi, 2004. Characteristics and rehabilitation of the spawning habitats of the sea trout, Salmo trutta, in Gotland (Sweden). Fisheries Management and Ecology 11: 15–22.

    Article  Google Scholar 

  • Sear, D. A. & P. DeVries (eds), 2008. Salmonid Spawning Habitat in Rivers: Physical Controls, Biological Responses, and Approaches to Remediation, Vol. 65. American Fisheries Society, Bethesda.

    Google Scholar 

  • Teichert, M. A. K., A. Foldvik, T. Forseth, O. Ugedal, S. Einum, A. G. Finstad, R. Hedger & E. Bellier, 2011. Effects of spawning distribution on juvenile Atlantic salmon (Salmo salar) density and growth. Canadian Journal of Fisheries and Aquatic Sciences 68: 43–50.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Walseng, B., F. Ødegaard, J. Økland, K. A. Økland & T. Bongard, 2010. Fresh water. Environmental Conditions and Impacts for Red List Species. Norwegian Biodiversity Center, Trondheim.

    Google Scholar 

  • Wheaton, J. M., G. Pasternack & J. E. Merz, 2004. Spawning habitat rehabilitation - II. Using hypothesis development and testing in design, Mokelumne river, California, U.S.A. International Journal of River Basin Management 2: 21–37.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the whole staff of NORCE LFI for help during fieldwork and inspiring discussions. Also thanks to Helge Skoglund for valuable comments on an earlier version of the manuscript. This study was financed by the regional government Fylkesmannen i Hordaland though the project “Sjøaurebekker i Bergen og omegn” og Hordaland Fylkeskommune through the project “Vosso Områdetilnærming”. The finalization of the manuscript was financed by internal funding through the project SIS FELT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Pulg.

Additional information

Handling editor: Michael Power

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulg, U., Vollset, K.W. & Lennox, R.J. Linking habitat to density-dependent population regulation: How spawning gravel availability affects abundance of juvenile salmonids (Salmo trutta and Salmo salar) in small streams. Hydrobiologia 841, 13–29 (2019). https://doi.org/10.1007/s10750-019-03997-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-03997-1

Keywords

Navigation