Wave exposure as a driver of isolation by environment in the marine gastropod Nucella lapillus

Abstract

The way adaptive and neutral genetic variation is shaped by environmental factors is crucial for evolutionary biology. To investigate whether wave exposure can enhance local adaptation on littoral snails, AFLP markers were scanned across ten populations of Nucella lapillus from contrasting habitats (protected vs. exposed). As some 6% of the analysed loci deviated from neutral expectations, it was suggested that wave exposure could be a strong selective agent shaping genetic variation. Neutral markers described a pattern of “Isolation by distance (IBD) only” with no signature of Isolation by environment (IBE), whereas loci under divergent selection followed a pattern of “IBD and IBE”, as Partial Mantel tests detected a significant IBD after accounting for environmental differences. The topology of genetic networks revealed a substantial gene flow at neutral markers (i.e. dense net with edges connecting similar and contrasting habitats), whereas few connections were established between contrasting environments at loci under divergent selection. Furthermore, loci correlated to phenotype (shell shape; i.e. a morphological biomarker of wave exposure) explained up to ca 11% of the variance of this trait. Altogether, our results suggest that, even in a context of gene flow, local adaptation could outline a feature such as shell shape.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Albert, F. W., Ö. Carlborg, I. Plyusnina, F. Besnier, D. Hedwig, S. Lautenschläger, D. Lorenz, J. McIntosh, C. Neumann, H. Richter, C. Zeising, R. Kozhemyakina, O. Shchepina, J. Kratzsch, L. Trut, D. Teupser, J. Thiery, T. Schöneberg, L. Andersson & S. Pääbo, 2009. Genetic architecture of tameness in a rat model of animal domestication. Genetics 182(2): 541–554.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Álvarez-Castro, J. M. & Ö. Carlborg, 2007. A unified model for functional and statistical epistasis and its application in Quantitative Trait Loci analysis. Genetics 176(2): 1151–1167.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Álvarez-Castro, J. M., A. Le Rouzic & Ö. Carlborg, 2008. How to perform meaningful estimates of genetic effects. PLoS Genet 4(5): e1000062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antao, T. & A. Lopes, 2011. Mcheza: a selection detection workbench for dominant markers. Bioinformatics 27(12): 1717–1718.

    Article  CAS  PubMed  Google Scholar 

  5. Ballantine, W. J., 1961. A biologically-defined exposure scale for the comparative description of rocky shores. Field Studies 1(3): 1–19.

    Google Scholar 

  6. Bantock, C. R. & W. C. Cockaine, 1975. Chromosomal polymorphism in Nucella lapillus. Heredity 34: 231–245.

    Article  PubMed  Google Scholar 

  7. Barreiro, R., L. Couceiro, M. Quintela & J. M. Ruiz, 2006. Population genetic structure of the prosobranch Nassarius reticulatus (L.) in a ria seascape (NW Iberian Peninsula) as revealed by RAPD analysis. Marine Biology 148(5): 1051–1060.

    Article  Google Scholar 

  8. Beaumont, M. A. & D. J. Balding, 2004. Identifying adaptive genetic divergence among populations from genome scans. Molecular Ecology 13(4): 969–980.

    Article  CAS  PubMed  Google Scholar 

  9. Beaumont, M. & R. Nichols, 1996. Evaluating loci for use in the genetic analysis of population structure. Biological Sciences 263(1377): 1619–1626.

    Google Scholar 

  10. Berry, R. J. & J. H. Crothers, 1968. Stabilizing selection in the dog-whelk (Nucella lapillus). Journal of Zoology, London 155: 5–17.

    Article  Google Scholar 

  11. Berry, R. J. & J. H. Crothers, 1974. Visible variation in the dog-whelk, Nucella lapillus. Journal of Zoology, London 174: 123–148.

    Article  Google Scholar 

  12. Besnier, F., A. Rouzic & J. M. Álvarez-Castro, 2010. Applying QTL analysis to conservation genetics. Conservation Genetics 11(2): 399–408.

    Article  Google Scholar 

  13. Blignaut, M., A. G. Ellis & J. J. Le Roux, 2013. Towards a transferable and cost-effective plant AFLP protocol. PLoS ONE 8(4): e61704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bohonak, A. J., 1999. Dispersal, gene flow, and population structure. Quarterly Review of Biology 74(1): 21–45.

    Article  CAS  PubMed  Google Scholar 

  15. Bonin, A., E. Belleiman, P. Bronken Eidesen, F. Pompanon, C. Brochmann & P. Taberlet, 2004. How to track and assess genotyping errors in population genetics studies. Molecular Ecology 13(11): 3261–3273.

    Article  CAS  PubMed  Google Scholar 

  16. Bonin, A., P. Taberlet, C. Miaud & F. Pompanon, 2006. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Molecular Biology and Evolution 23(4): 773–783.

    Article  CAS  PubMed  Google Scholar 

  17. Boulding, E. G., 1990. Are the opposing selection pressures on exposed and protected shores sufficient to maintain genetic differentiation between gastropod populations with high intermigration rates? Hydrobiologia 193: 41–52.

    Article  Google Scholar 

  18. Bourret, V., M. P. Kent, C. R. Primmer, A. Vasemägi, S. Karlsson, K. Hindar, P. McGinnity, E. Verspoor, L. Bernatchez & S. Lien, 2013. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Molecular Ecology 22(3): 532–551.

    Article  CAS  PubMed  Google Scholar 

  19. Brönmark, C., T. Lakowitz & J. Hollander, 2011. Predator-induced morphological plasticity across local populations of a fresh water snail. PLoS ONE 6(7): e21773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Butlin, R. K., J. Galindo & J. W. Grahame, 2008. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society B 363(1506): 2997–3007.

    Article  Google Scholar 

  21. Butlin, R. K., M. Saura, G. Charrier, B. Jackson, C. André, A. Caballero, J. A. Coyne, J. Galindo, J. W. Grahame, J. Hollander, P. Kemppainen, M. Martínez-Fernández, M. Panova, H. Quesada, K. Johannesson & E. Rolán-Alvarez, 2014. Parallel evolution of local adaptation and reproductive isolation in the face of gene flow. Evolution 68(4): 935–949.

    Article  PubMed  Google Scholar 

  22. Caballero, A., H. Quesada & E. Rolán-Álvarez, 2008. Impact of AFLP fragment size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics 179(1): 539–554.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carvajal-Rodríguez, A., E. Rolán-Álvarez & A. Caballero, 2005. Quantitative variation as a tool for detecting human-induced impacts on genetic diversity. Biological Conservation 124(1): 1–13.

    Article  Google Scholar 

  24. Castle, S. L. & A. E. H. Emery, 1981. Nucella lapillus: a possible model for the study of genetic variation in natural populations. Genetica 56: 11–15.

    Article  Google Scholar 

  25. Chan, Y. F., M. E. Marks, F. C. Jones, G. Villarreal, M. D. Shapiro, S. D. Brady, A. M. Southwick, D. M. Absher, J. Grimwood, J. Schmutz, R. M. Myers, D. Petrov, B. Jãnsson, D. Schluter, M. A. Bell & D. M. Kingsley, 2010. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963): 302–305.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, F., X. Luo, D. Wang & C. Ke, 2010. Population structure of the spotted babylon, Babylonia areolata in three wild populations along the Chinese coastline revealed using AFLP fingerprinting. Biochemical Systematics and Ecology 38(6): 1103–1110.

    Article  CAS  Google Scholar 

  27. Chrismas, N. A. M., B. Torres-Fabila, C. S. Wilding & J. W. Grahame, 2014. An association of mitochondrial haplotype with shell shape in the intertidal gastropod Littorina saxatilis. Journal of Molluscan Studies 80(2): 184–189.

    Article  Google Scholar 

  28. Colson, I., J. Guerra-Varela, R. N. Hughes & E. Rolán-Álvarez, 2006. Using molecular and quantitative variation for assessing genetic impacts on Nucella lapillus populations after local extinction and recolonization. Integrative Zoology 2: 104–107.

    Article  Google Scholar 

  29. Colton, H. S., 1922. Variation in the dogwhelk Thais (Purpura auct.) lapillus. Ecology 3(2): 146–157.

    Article  Google Scholar 

  30. Conde-Padín, P., A. Carvajal-Rodríguez, M. Carballo, A. Caballero & E. Rolán-Alvarez, 2007. Genetic variation for shell traits in a direct-developing marine snail involved in a putative sympatric ecological speciation process. Evolutionary Ecology 21(5): 635–650.

    Article  Google Scholar 

  31. Conde-Padín, P., R. Cruz, J. Hollander & E. Rolán-Álvarez, 2008. Revealing the mechanisms of sexual isolation in a case of sympatric and parallel ecological divergence. Biological Journal of the Linnean Society 94(3): 513–526.

    Article  Google Scholar 

  32. Conover, D. O., L. M. Clarke, S. B. Munch & G. N. Wagner, 2006. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology 69: 21–47.

    Article  Google Scholar 

  33. Cotton, P. A., D. R. Simon & K. E. Smith, 2004. Trait compensation in marine gastropods: shell shape, avoidance behavior, and susceptibility to predation. Ecology 85(6): 1581–1584.

    Article  Google Scholar 

  34. Coyne, J. A. & H. A. Orr, 1989. Patterns of speciation in Drosophila. Evolution 43(2): 362–381.

    Article  PubMed  Google Scholar 

  35. Crothers, J. H., 1973. On variation in Nucella lapillus (L.): shell shape in populations from Pembrokeshire, South Wales. Proceedings of the Malacological Society of London 40: 319–327.

    Google Scholar 

  36. Crothers, J. H., 1977. On variation in Nucella lapillus (L.): shell shape in populations towards the southern limit of its European range. Journal of Molluscan Studies 43(2): 181–188.

    Google Scholar 

  37. Crothers, J. H., 1983. Variation in dog-whelk shells in relation to wave action and crab predation. Biological Journal of the Linnean Society 20(1): 85–102.

    Article  Google Scholar 

  38. Crothers, J. H., 1985. Dog-whelks: an introduction to the biology of Nucella lapillus (L.). Field Studies 6: 291–360.

    Google Scholar 

  39. Cuña, V., Quesada Saura & E. Rolán-Álvarez, 2011. Extensive micro-geographical shell polymorphism in a planktotrophic marine intertidal snail. Marine Ecology Progress Series 427: 133–143.

    Article  Google Scholar 

  40. Day, A. J., 1990. Microgeographic variation in allozyme frequencies in relation to the degrees of exposure to wave action in the dogwhelk Nucella lapillus(L.) (Prosobranchia: Muriacea). Biological Journal of the Linnean Society 40: 245–261.

    Article  Google Scholar 

  41. Day, A. J. & B. L. Bayne, 1988. Allozyme variation in populations of the dog-whelk Nucella lapillus (Prosobranchia: Muriacea) from the South West Peninsula of England. Marine Biology 99: 93–100.

    Article  Google Scholar 

  42. Dieckmann, U., J. A. J. Metz, M. Doebeli & D. Tautz, 2004. Adaptive Speciation. Cambridge University Press, Cambridge.

    Google Scholar 

  43. Dyer, R. J., 2009. GeneticStudio: a suite of programs for spatial analysis of genetic-marker data. Molecular Ecology Resources 9(1): 110–113.

    Article  PubMed  Google Scholar 

  44. Dyer, R. J., 2015. Population graphs and landscape genetics. Annual Review of Ecology, Evolution, and Systematics 46(1): 327–342.

    Article  Google Scholar 

  45. Dyer, R. J. & J. D. Nason, 2004. Population Graphs: the graph theoretic shape of genetic structure. Molecular Ecology 13(7): 1713–1727.

    Article  PubMed  Google Scholar 

  46. Dyer, R. J., J. D. Nason & R. C. Garrick, 2010. Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Molecular Ecology 19(17): 3746–3759.

    Article  PubMed  Google Scholar 

  47. Eckert, A. J., J. van Heerwaarden, J. L. Wegrzyn, C. D. Nelson, J. Ross-Ibarra, S. C. González-Martínez & D. B. Neale, 2010. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185(3): 969–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Edelaar, P., A. M. Siepielski & J. Clobert, 2008. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62(10): 2462–2472.

    Article  PubMed  Google Scholar 

  49. Erlandsson, J., K. Johannesson & E. Rolán-Alvarez, 1998. Migratory differences between ecotypes of the snail Littorina saxatilis on Galician rocky shores. Evolutionary Ecology 12(8): 913–924.

    Article  Google Scholar 

  50. Etter, R. J., 1996. The effect of wave action, prey type, and foraging time on growth of the predatory snail Nucella lapillus(L.). Journal of the Marine Biological Association of the United Kingdom 196: 341–356.

    Google Scholar 

  51. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 21(2): 479–491.

    Google Scholar 

  52. Excoffier, L., T. Hofer & M. Foll, 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103(4): 285–298.

    Article  CAS  PubMed  Google Scholar 

  53. Foll, M. & O. Gaggiotti, 2006. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174(2): 875–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Foll, M. & O. Gaggiotti, 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180(2): 977–993.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Foll, M., M. A. Beaumont & O. Gaggiotti, 2008. An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179(2): 927–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fortuna, M. A., R. G. Albaladejo, L. Fernández, A. Aparicio & J. Bascompte, 2009. Networks of spatial genetic variation across species. Proceedings of the National Academy of Sciences of the United States of America 106(45): 19044–19049.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Freedman, A. H., H. A. Thomassen, W. Buermann & T. B. Smith, 2010. Genomic signals of diversification along ecological gradients in a tropical lizard. Molecular Ecology 19: 3773–3788.

    Article  PubMed  Google Scholar 

  58. Galindo, H. M., D. B. Olson & S. R. Palumbi, 2006. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Current Biology 16(16): 1622–1626.

    Article  CAS  PubMed  Google Scholar 

  59. Galindo, J., P. Morán & E. Rolán-Álvarez, 2009. Comparing geographical genetic differentiation between candidate and noncandidate loci for adaptation strengthens support for parallel ecological divergence in the marine snail Littorina saxatilis. Molecular Ecology 18(5): 919–930.

    Article  CAS  PubMed  Google Scholar 

  60. Galindo, J., M. J. Rivas, M. Saura & E. Rolán-Alvarez, 2014. Selection on hybrids of ecologically divergent ecotypes of a marine snail: the relative importance of exogenous and endogenous barriers. Biological Journal of the Linnean Society 111(2): 391–400.

    Article  Google Scholar 

  61. Galindo, J., D. Cacheda, A. Caballero & E. Rolán-Alvarez, 2019. Untangling the contribution of genetic and environmental effects to shell differentiation across an environmental cline in a marine snail. Journal of Experimental Marine Biology and Ecology 513: 27–34.

    Article  Google Scholar 

  62. Garant, D., S. E. Forde & A. P. Hendry, 2007. The multifarious effects of dispersal and gene flow on contemporary adaptation. Functional Ecology 21: 434–443.

    Article  Google Scholar 

  63. García-Ramos, G. & M. Kirkpatrick, 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51(1): 21–28.

    Article  PubMed  Google Scholar 

  64. Garroway, C. J., J. Bowman, D. Carr & P. J. Wilson, 2008. Applications of graph theory to landscape genetics. Evolutionary Applications 1(4): 620–630.

    PubMed  PubMed Central  Google Scholar 

  65. Giordano, A. R., J. Benjamin & A. Storfer, 2007. The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Molecular Ecology 16(8): 1625–1637.

    Article  CAS  PubMed  Google Scholar 

  66. Goudet, J., T. De Meeüs, A. J. Day & C. J. Gliddon, 1994. The different levels of population structuring of the dogwhelk, Nucella lapillus, along the south Devon coast. In Beaumont, A. R. (ed.), Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London: 81–95.

    Google Scholar 

  67. Grahame, J. W., C. S. Wilding & R. K. Butlin, 2006. Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60(2): 268–278.

    Article  CAS  PubMed  Google Scholar 

  68. Guerra-Varela, J., I. Colson, T. Backeljau, K. Breugelmans, R. N. Hughes & E. Rolán-Álvarez, 2009. The evolutionary mechanism maintaining shell shape and molecular differentiation between two ecotypes of the dogwhelk Nucella lapillus. Evolutionary Ecology 23: 261–280.

    Article  Google Scholar 

  69. Hellberg, M. E., R. S. Burton, J. E. Neigel & S. R. Palumbi, 2002. Genetic assessment of connectivity among marine populations. Bull Mar Sci 70(1): 273–290.

    Google Scholar 

  70. Hendry Andrew, P., 2004. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research 6: 1219–1236.

    Google Scholar 

  71. Hoekstra, E. Hopi, E. Drumm, K. Nachman & W. Michael, 2004. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution 58(6): 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  72. Hoekstra, H. E., R. J. Hirschmann, R. A. Bundey, P. A. Insel & J. P. Crossland, 2006. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313(5783): 101–104.

    Article  CAS  PubMed  Google Scholar 

  73. Hoffman, J. I., L. S. Peck, G. Hillyard, A. Zieritz & M. S. Clark, 2010. No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Marine Biology 157(4): 765–778.

    Article  CAS  Google Scholar 

  74. Hollander, J. & R. Butlin, 2010. The adaptive value of phenotypic plasticity in two ecotypes of a marine gastropod. BMC Evolutionary Biology 10(1): 333.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Johannesson, K., B. Johannesson & E. Rolán-Alvarez, 1993. MMorphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail Littorina saxatilis. Evolution 47(6): 1770–1787.

    Article  PubMed  Google Scholar 

  76. Johannesson, B. & K. Johannesson, 1996. Population differences in behaviour and morphology in the snail Littorina saxatilis: phenotypic plasticity or genetic differentiation? Journal of Zoology 240: 475–493.

    Article  Google Scholar 

  77. Johannesson, K., M. Panova, P. Kemppainen, C. André, E. Rolán-Alvarez & R. K. Butlin, 2010. Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1547): 1735–1747.

    Article  Google Scholar 

  78. Johnson, M. S. & R. Black, 1991. Genetic subdivision of the intertidal snail Bembicium vittatum (Gastropoda: Littorinidae) varies with habitat in the Houtman Abrolhos Islands, Western Australia. Heredity 67: 205–213.

    Article  Google Scholar 

  79. Johnson, M. S. & R. Black, 1998. Effects of habitat on growth and shape of contrasting phenotypes of Bembicium vittatum Philippi in the Houtman Abrolhos Islands, Western Australia. Hydrobiologia 378(1–3): 95–103.

    Article  Google Scholar 

  80. Johnson, M. S. & R. Black, 2008. Adaptive responses of independent traits to the same environmental gradient in the intertidal snail Bembicium vittatum. Heredity 101: 83.

    Article  CAS  PubMed  Google Scholar 

  81. Joost, S., A. Bonin, M. W. Bruford, L. Després, C. Conord, G. Erhardt & P. Taberlet, 2007. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Molecular Ecology 16(18): 3955–3969.

    Article  CAS  PubMed  Google Scholar 

  82. Joost, S., M. Kalbermatten & A. Bonin, 2008. Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Molecular Ecology Resources 8(5): 957–960.

    Article  PubMed  Google Scholar 

  83. Kane, N. C. & L. H. Rieseberg, 2007. Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower. Helianthus annuus. Genetics 175(4): 1823–1834.

    CAS  PubMed  Google Scholar 

  84. Kavanagh, K., T. Haugen, F. Gregersen, J. Jernvall & L. Vollestad, 2010. Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation. BMC Evolutionary Biology 10(1): 350.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kawecki, T. J. & D. Ebert, 2004. Conceptual issues in local adaptation. Ecology Letters 7(12): 1225–1241.

    Article  Google Scholar 

  86. Kess, T., J. Galindo & E. G. Boulding, 2018. Genomic divergence between Spanish Littorina saxatilis ecotypes unravels limited admixture and extensive parallelism associated with population history. Ecology and Evolution 8(16): 8311–8327.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kingsolver, J. G., D. W. Pfennig & M. R. Servedio, 2002. Migration, local adaptation and the evolution of plasticity. Trends in Ecology & Evolution 17(12): 540–541.

    Article  Google Scholar 

  88. Kirby, R. R., B. L. Bayne & R. J. Berry, 1994. Phenotypic variation along a cline in allozyme and karyotype frequencies, and its relationship with habitat, in the dog-whelk Nucella lapillus, L. Biological Journal of the Linnean Society 53(3): 255–275.

    Article  Google Scholar 

  89. Kitching, J. A., 1977. Shell form and niche occupation in Nucella lapillus (L.) (Gastropoda). Journal of Experimental Marine Biology and Ecology 26: 275–287.

    Article  Google Scholar 

  90. Kitching, J. A., 1985. The ecological significance and control of shell variability in dogwhelks from temperate rocky shores. In Moore, P. G. & R. Seed (eds), The Ecology of Rocky Coasts. Hodder & Stoughton, London: 234–248.

    Google Scholar 

  91. Kitching, J. A., L. Muntz & F. J. Ebling, 1966. The Ecology of Lough Ine. XV. The ecological significance of shell and body forms in Nucella. Journal of Animal Ecology 35(1): 113–126.

    Article  Google Scholar 

  92. Koskinen, M. T., P. Sundell, J. Piironen & C. R. Primmer, 2002. Genetic assessment of spatiotemporal evolutionary relationships and stocking effects in grayling (Thymallus thymallus, Salmonidae). Ecology Letters 5(2): 193–205.

    Article  Google Scholar 

  93. Lakowitz, T., C. Brönmark & P. E. R. Nyström, 2008. Tuning in to multiple predators: conflicting demands for shell morphology in a freshwater snail. Freshwater Biology 53(11): 2184–2191.

    Google Scholar 

  94. Lam, P. K. S. & P. Calow, 1988. Differences in the shell shape of Lymnaea peregra (Müller) (Gastropoda: Pulmonata) from lotic and lentic habitats; environmental or genetic variance? Journal of Molluscan Studies 54(2): 197–207.

    Article  Google Scholar 

  95. Le Rouzic, A., J. M. Álvarez-Castro & Ö. Carlborg, 2008. Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics 179(3): 1591–1599.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Legendre, P. & M.-J. Fortin, 2010. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources 10(5): 831–844.

    Article  PubMed  Google Scholar 

  97. Lenormand, T., 2002. Gene flow and the limits to natural selection. Trends in Ecology & Evolution 17(4): 183–189.

    Article  Google Scholar 

  98. LeRouzic, A. & J. M. Álvarez-Castro, 2008. Estimation of genetic effects and genotype-phenotype maps. Evolutionary Bioinformatics 28(4): 225–235.

    Google Scholar 

  99. LeRouzic, A., A. B. Gjuvsland & O. Ariste, 2015. Package ‘noia’. Implementation of the Natural and Orthogonal InterAction (NOIA) model version 0.97.1. CRAN.

  100. Limborg, M. T., S. J. Helyar, M. De Bruyn, M. I. Taylor, E. E. Nielsen, R. O. B. Ogden, G. R. Carvalho, F. P. T. Consortium & D. Bekkevold, 2012. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Molecular Ecology 21(15): 3686–3703.

    Article  CAS  PubMed  Google Scholar 

  101. Malécot, G. & L. Blaringhem, 1948. Les mathématiques de l’hérédité. Masson et Cie, Paris.

    Google Scholar 

  102. Mantel, N., 1967. The detection of disease of clustering and a generalized regression approach. Cancer Research 27(2): 209–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Martínez-Fernández, M., A. M. Rodríguez-Piñeiro, E. Oliveira, M. Páez de la Cadena & E. Rolán-Alvarez, 2008. Proteomic comparison between two marine snail ecotypes reveals details about the biochemistry of adaptation. Journal of Proteome Research 7(11): 4926–4934.

    Article  CAS  PubMed  Google Scholar 

  104. Martínez-Fernández, M., L. Bernatchez, E. Rolán-Álvarez & H. Quesada, 2010. Insights into the role of differential gene expression on the ecological adaptation of the snail Littorina saxatilis. BMC Evolutionary Biology 10: 356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mattersdorfer, K., S. Koblmüller & K. M. Sefc, 2012. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish. Molecular Ecology 21(14): 3531–3544.

    Article  PubMed  Google Scholar 

  106. McCairns, R. J. S. & L. Bernatchez, 2008. Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Molecular Ecology 17(17): 3901–3916.

    Article  PubMed  Google Scholar 

  107. McCracken, K. G., M. Bulgarella, K. P. Johnson, M. K. Kuhner, J. Trucco, T. H. Valqui, R. E. Wilson & J. L. Peters, 2009. Gene flow in the face of countervailing selection: adaptation to high-altitude hypoxia in the βA hemoglobin subunit of yellow-billed pintails in the Andes. Molecular Biology and Evolution 26: 815–827.

    Article  CAS  PubMed  Google Scholar 

  108. Meirmans, P. G., 2012. The trouble with isolation by distance. Molecular Ecology 21(12): 2839–2846.

    Article  PubMed  Google Scholar 

  109. Meudt, H. M. & A. C. Clarke, 2007. Almost Forgotten or Latest Practice? AFLP applications, analyses and advances. Trends in Plant Science 12(3): 106–117.

    Article  CAS  PubMed  Google Scholar 

  110. Minor, E. S. & D. L. Urban, 2007. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecological Applications 17(6): 1771–1782.

    Article  PubMed  Google Scholar 

  111. Moore, H. B., 1936. The biology of Purpura lapillus. I. Shell variation in relation to environment. Journal of the Marine Biological Association of the United Kingdom 21: 61–89.

    Article  Google Scholar 

  112. Mullen, L. M., S. N. Vignieri, J. A. Gore & H. E. Hoekstra, 2009. Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proceedings of the Royal Society of London Series B 276: 3809–3818.

    Article  PubMed  Google Scholar 

  113. Murphy, M. A., R. Dezzani, D. S. Pilliod & A. Storfer, 2010. Landscape genetics of high mountain frog metapopulations. Molecular Ecology 19: 3634–3649.

    Article  PubMed  Google Scholar 

  114. Nanninga, G. B., P. Saenz-Agudelo, A. Manica & M. L. Berumen, 2014. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea. Molecular Ecology 23(3): 591–602.

    Article  PubMed  Google Scholar 

  115. Nosil, P., 2009. Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63(7): 1902–1912.

    Article  PubMed  Google Scholar 

  116. Nosil, P., 2012. Ecological Speciation. Oxford University Press, Oxford.

    Google Scholar 

  117. Nosil, P. & J. L. Feder, 2012. Widespread yet heterogeneous genomic divergence. Molecular Ecology 21(12): 2829–2832.

    Article  PubMed  Google Scholar 

  118. Nosil, P., S. P. Egan, D. J. Funk & H. Hoekstra, 2007. Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by Adaptation” and multiple roles for divergent selection. Evolution 62(2): 316–336.

    Article  PubMed  Google Scholar 

  119. Nosil, P., D. J. Funk & D. Ortiz-Barrientos, 2009. Divergent selection and heterogeneous genomic divergence. Molecular Ecology 18: 375–402.

    Article  PubMed  Google Scholar 

  120. Nunes, V. L., M. A. Beaumont, R. K. Butlin & O. S. Paulo, 2011. Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient. Molecular Ecology 20: 193–205.

    Article  PubMed  Google Scholar 

  121. Orsini, L., J. Vanoverbeke, I. Swillen, J. Mergeay & L. De Meester, 2013. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology 22(24): 5983–5999.

    Article  PubMed  Google Scholar 

  122. Palmer, A. R., 1990. Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus (L.). Hydrobiologia 193: 155–182.

    Article  Google Scholar 

  123. Panova, M., J. Hollander & K. Johannesson, 2006. Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Molecular Ecology 15(13): 4021–4031.

    Article  CAS  PubMed  Google Scholar 

  124. Paris, M., S. Boyer, A. Bonin, A. Collado, J. P. David & L. Despres, 2010. Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Molecular Ecology 19(2): 325–337.

    Article  PubMed  Google Scholar 

  125. Parsons, K. E., 1997. Contrasting patterns of heritable geographic variation in shell morphology and growth potential in the marine gastropod Bembicium vittatum: evidence from field experiments. Evolution 51(3): 784–796.

    PubMed  Google Scholar 

  126. Pascoal, S., G. Carvalho, S. Creer, S. Mendo & R. Hughes, 2012a. Plastic and heritable variation in shell thickness of the intertidal gastropod Nucella lapillus associated with risks of crab predation and wave action, and sexual maturation. PLoS ONE 7(12): e52134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pascoal, S., G. Carvalho, S. Creer, J. Rock, K. Kawaii, S. Mendo & R. Hughes, 2012b. Plastic and heritable components of phenotypic variation in Nucella lapillus: an assessment using reciprocal transplant and common garden experiments. PLoS ONE 7(1): e30289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Paun, O. & P. Schönswetter, 2012. Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods in molecular biology (Clifton, NJ) 862: 75–87.

    Article  CAS  Google Scholar 

  129. Peakall, R. & P. E. Smouse, 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources 6(1): 288–295.

    Google Scholar 

  130. Peccoud, J., A. Ollivier, M. Plantegenest & J.-C. Simon, 2009. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proceedings of the National Academy of Sciences 106(18): 7495–7500.

    Article  Google Scholar 

  131. Pérez-Figueroa, A., M. J. García-Pereira, M. Saura, E. Rolán-Álvarez & A. Caballero, 2010. Comparing three different methods to detect selective loci using dominant markers. Journal of Evolutionary Biology 23(10): 2267–2276.

    Article  PubMed  Google Scholar 

  132. Pfenninger, M., M. Cordellier & B. Streit, 2006. Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evolutionary Biology 6(1): 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Poncet, B. N., D. Herrmann, F. Gugerli, P. Taberlet, R. Holderegger, L. Gielly, D. Rioux, W. Thuiller, S. Aubert & S. Manel, 2010. Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Molecular Ecology 19(14): 2896–2907.

    Article  CAS  PubMed  Google Scholar 

  134. Quesada, H., D. Posada, A. Caballero, P. Morán & E. Rolán-Alvarez, 2007. Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail. Evolution 61(7): 1600–1612.

    Article  PubMed  Google Scholar 

  135. Quintela, M., M. P. Johansson, B. K. Kristjánsson, R. Barreiro & A. Laurila, 2014. AFLPs and mitochondrial haplotypes reveal local adaptation to extreme thermal environments in a freshwater gastropod. PLOS ONE 9(7): e101821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Richter-Boix, A., M. Quintela, G. Segelbacher & A. Laurila, 2011. Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis. Molecular Ecology 20(8): 1582–1600.

    Article  CAS  PubMed  Google Scholar 

  137. Richter-Boix, A., M. Quintela, M. Kierczak, M. Franch & A. Laurila, 2013. Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Molecular Ecology 22(5): 1322–1340.

    Article  CAS  PubMed  Google Scholar 

  138. Riginos, C. & L. Liggins, 2013. Seascape genetics: populations, individuals, and genes marooned and adrift. Geography Compass 7(3): 197–216.

    Article  Google Scholar 

  139. Rolán-Álvarez, E., 2007. Sympatric speciation as a by-product of ecological adaptation in the Galician Littorina saxatilis hybrid zone. Journal of Molluscan Studies 73(1): 1–10.

    Article  Google Scholar 

  140. Rolán-Álvarez, E., C. J. Austin & E. G. Boulding, 2015. The contribution of the genus Littorina to the field of evolutionary Ecology. In Hughes, R. N., D. J. Hughes, I. P. Smith & A. C. Dale (eds), Oceanography and Marine Biology: An Annual Review. Taylor & Francis, London: 157–214.

    Google Scholar 

  141. Rolán, E., J. Guerra-Varela, I. Colson, R. N. Hughes & E. Rolán-Álvarez, 2004. Morphological and genetic analysis of two sympatric morphs of the dogwhelk Nucella lapillus (Gastropoda: Muricidae) from Galicia (Northwestern Spain). Journal of Molluscan Studies 70: 179–185.

    Article  Google Scholar 

  142. Rosenberg, M. S. & C. D. Anderson, 2011. PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution 2(3): 229–232.

    Article  Google Scholar 

  143. Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4): 1219–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Rundle, H. D. & P. Nosil, 2005. Ecological speciation. Ecology Letters 8(3): 336–352.

    Article  Google Scholar 

  145. Räsänen, K. & A. P. Hendry, 2008. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters 11(6): 624–636.

    Article  PubMed  Google Scholar 

  146. Sanford, E. & M. W. Kelly, 2011. Local adaptation in marine invertebrates. Annual Review of Marine Science 3(1): 509–535.

    Article  PubMed  Google Scholar 

  147. Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  148. Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323: 737–741.

    Article  CAS  PubMed  Google Scholar 

  149. Schluter, D., A. Clifford Elizabeth, M. Nemethy & S. McKinnon Jeffrey, 2004. Parallel evolution and inheritance of quantitative traits. The American Naturalist 163: 809–822.

    Article  PubMed  Google Scholar 

  150. Selkoe, K. A., C. M. Henzler & S. D. Gaines, 2008. Seascape genetics and the spatial ecology of marine populations. Fish and Fisheries 9(4): 363–377.

    Article  Google Scholar 

  151. Sexton, J. P., S. B. Hangartner & A. A. Hoffmann, 2014. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68(1): 1–15.

    Article  CAS  PubMed  Google Scholar 

  152. Shafer, A. B. A. & J. B. W. Wolf, 2013. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecology Letters 16(7): 940–950.

    Article  PubMed  Google Scholar 

  153. Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236(4803): 787–792.

    Article  CAS  PubMed  Google Scholar 

  154. Slatkin, M., 1993. Isolation by Distance in equilibrium and non-equilibrium populations. Evolution 47(1): 264–279.

    Article  PubMed  Google Scholar 

  155. Sork, V. L., F. W. Davis, R. Westfall, A. Flint, M. Ikegami, H. Wang & D. Grivet, 2010. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Molecular Ecology 19: 3806–3823.

    Article  PubMed  Google Scholar 

  156. Steiner, C. C., J. N. Weber & H. E. Hoekstra, 2007. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biology 5(9): e219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Storz, J. F. & J. K. Kelly, 2008. Effects of spatially varying selection on nucleotide diversity and linkage disequilibrium: insights from the deer mouse globin genes. Genetics 180: 367–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Storz, J. F., S. J. Sabatino, F. G. Hoffmann, E. J. Gering, H. Moriyama, N. Ferrand, B. Monteiro & M. W. Nachman, 2007. The molecular basis of high-altitude adaptation in deer mice. PLoS Genetics 3(3): e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Thibert-Plante, X. & A. P. Hendry, 2009. Five questions on ecological speciation addressed with individual-based simulations. Journal of Evolutionary Biology 22(1): 109–123.

    Article  CAS  PubMed  Google Scholar 

  160. Tirado, T., M. Saura, E. Rolán-Alvarez & H. Quesada, 2016. Historical biogeography of the marine snail Littorina saxatilis inferred from haplotype and shell morphology evolution in NW Spain. PLoS ONE 11(8): e0161287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tollenaere, C., J.-M. Duplantier, L. Rahalison, M. Ranjalahy & C. Brouat, 2011. AFLP genome scan in the black rat (Rattus rattus) from Madagascar: detecting genetic markers undergoing plague-mediated selection. Molecular Ecology 20(5): 1026–1038.

    Article  CAS  PubMed  Google Scholar 

  162. Trussell, G. C. & R. J. Etter, 2001. Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail. Genetica 112–113(1): 321–337.

    Article  PubMed  Google Scholar 

  163. Vermeij, G. J., 1982. Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature 299: 349–350.

    Article  Google Scholar 

  164. Via, S., 1993. Adaptive phenotypic plasticity: target or by-product of selection in a variable environment? American Naturalist 142(2): 352–365.

    Article  CAS  PubMed  Google Scholar 

  165. Via, S., 2009. Natural selection in action during speciation. Proceedings of the National Academy of Sciences of the United States of America 106(Supplement 1): 9939–9946.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Via, S., R. Gomulkiewicz, G. De Jong, S. M. Scheiner, C. D. Schlichting & P. H. Van Tienderen, 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution 10(5): 212–217.

    Article  CAS  Google Scholar 

  167. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21): 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, I. J. & G. S. Bradburd, 2014. Isolation by environment. Molecular Ecology 23(23): 5649–5662.

    Article  PubMed  Google Scholar 

  169. Wang, I. J., R. E. Glor & J. B. Losos, 2013. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters 16(2): 175–182.

    Article  PubMed  Google Scholar 

  170. Wasserman, T. N., S. A. Cushman, M. K. Schwartz & D. O. Wallin, 2010. Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology 25(10): 1601–1612.

    Article  Google Scholar 

  171. Weissing, F. J., P. Edelaar & G. S. van Doorn, 2011. Adaptive speciation theory: a conceptual review. Behavioral Ecology and Sociobiology 65(3): 461–480.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Westberg, E., S. Ohali, A. Shevelevich, P. Fine & O. Barazani, 2013. Environmental effects on molecular and phenotypic variation in populations of Eruca sativa across a steep climatic gradient. Ecology and Evolution 3(8): 2471–2484.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Westram, A. M., J. Galindo, M. Alm Rosenblad, J. W. Grahame, M. Panova & R. K. Butlin, 2014. Do the same genes underlie parallel phenotypic divergence in different Littorina saxatilis populations? Molecular Ecology 23(18): 4603–4616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wilding, C. S., R. K. Butlin & J. Grahame, 2001. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology 14: 611–619.

    Article  CAS  Google Scholar 

  175. Wood, H. M., J. W. Grahame, S. Humphray, J. Rogers & R. K. Butlin, 2008. Sequence differentiation in regions identified by a genome scan for local adaptation. Molecular Ecology 17(13): 3123–3135.

    Article  CAS  PubMed  Google Scholar 

  176. Wright, S., 1943. Isolation by distance. Genetics 28(2): 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Yeaman, S. & A. Jarvis, 2006. Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proceedings of the Royal Society B: Biological Sciences 273(1594): 1587–1593.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Carlos Caramelo for his help during field work, Javier Cremades for assisting us to determine wave exposure, and François Besnier and José Álvarez-Castro for their help with NOIA analyses. We are also grateful to Alex Richter-Boix and Gernot Segelbacher for their insightful comments on an early version of this manuscript. Financial support for this work was provided by the Ministerio de Educación y Ciencia of Spain, Grant CTM2004-04496/MAR (partially co-founded by FEDER, Fondo Europeo de Desarrollo Regional); and Xunta de Galicia, Grant PGIDT05PXIC10302PN. BC acknowledges fellowships from Universidade da Coruña and Deputación da Coruña.

Author information

Affiliations

Authors

Corresponding author

Correspondence to María Quintela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carro, B., Quintela, M., Ruiz, J.M. et al. Wave exposure as a driver of isolation by environment in the marine gastropod Nucella lapillus. Hydrobiologia 839, 51–69 (2019). https://doi.org/10.1007/s10750-019-03993-5

Download citation

Keywords

  • Isolation by distance
  • Isolation by environment
  • Wave exposure
  • Marine snails
  • Shell shape
  • Genotype–phenotype correlations