Skip to main content

Developing precipitation- and groundwater-corrected stream temperature models to improve brook charr management amid climate change

Abstract

Conserving coldwater stream ecosystems in a warming world requires understanding how water temperature changes will affect the sustainability of coldwater fish populations such as brook charr (Salvelinus fontinalis). To date, many models for predicting stream temperature have either assumed spatially uniform (inaccurate) air-stream temperature relationships or required expensive measurement of hydrometeorological drivers (e.g., solar radiation, convection) in a manner impractical for fisheries management. Hence, we developed an accurate, cost-effective, management-relevant modeling approach for projecting how changes in air temperature, precipitation, and groundwater inputs will affect coldwater stream temperatures and brook charr survival and growth in Michigan, USA. Precipitation- and groundwater-corrected models predicted stream temperatures more accurately than air-stream temperature models. Projected stream warming intensified in proportion to simulated air temperature warming and was most extreme in surface runoff-dominated streams with limited groundwater-driven thermal buffering. However, groundwater-dominated streams will not invariably provide sufficient coldwater habitats for brook charr survival and growth if groundwater temperatures increase or groundwater inputs decline due to reduced precipitation. Amid resource limitations, fisheries managers can use the stream temperature modeling approach described herein to predict effects of climate change on brook charr survival and growth and take actions to facilitate their sustainability in riverine systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Almodóvar, A., G. G. Nicola, D. Ayllón & B. Elvira, 2012. Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology 18: 1549–1560.

    Article  Google Scholar 

  • Arnold, T. W., 2010. Uninformative parameters and model selection using Akaike’s Information Criterion. Journal of Wildlife Management 74: 1175–1178.

    Article  Google Scholar 

  • Baldwin, N. S., 1957. Food consumption and growth of brook trout at different temperatures. Transactions of the American Fisheries Society 86: 323–328.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.

    Google Scholar 

  • Carlson, A. K., W. W. Taylor, K. M. Schlee, T. G. Zorn & D. M. Infante, 2016. Projected impacts of climate change on stream salmonids with implications for resilience-based management. Ecology of Freshwater Fish 26: 190–204.

    Article  Google Scholar 

  • Carlson, A. K., W. W. Taylor, K. M. Hartikainen, D. M. Infante, T. Douglas Beard & A. J. Lynch, 2017. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate. Reviews in Fish Biology and Fisheries 27: 443–462.

    Article  Google Scholar 

  • Cherkauer, K. A. & T. Sinha, 2010. Hydrologic impacts of projected future climate change in the Lake Michigan region. Journal of Great Lakes Research 36: 33–50.

    Article  Google Scholar 

  • Constantz, J., 1998. Interaction between stream temperature, streamflow, and groundwater exchanges in Alpine streams. Water Resources Research 34: 1609–1615.

    Article  Google Scholar 

  • Cooper, A. R., D. M. Infante, K. E. Wehrly, L. Wang & T. O. Brenden, 2016. Identifying indicators and quantifying large-scale effects of dams on fishes. Ecological Indicators 61: 646–657.

    Article  Google Scholar 

  • Dukić, V. & V. Mihailović, 2012. Analysis of groundwater regime on the basis of streamflow hydrograph. Facta Universitatis 10: 301–314.

    Google Scholar 

  • Dunham, J., G. Chandler, B. Rieman, and D. Martin, 2005. Measuring stream temperature with digital data loggers: a user’s guide. General Technical Report RMRS-GTR-150WWW. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.

  • Ebersole, J. L., W. J. Liss & C. A. Frissell, 2003. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. Journal of the American Water Resources Association 39: 355–368.

    Article  Google Scholar 

  • Enviro-weather Automated Weather Station Network (EAWSN), 2018. Michigan State University. Accessed 13 June 2018, [available on internet at https://mawn.geo.msu.edu/.

  • Fry, F. E. J., J. S. Hart & K. F. Walker, 1946. Lethal temperature relations for a sample of young speckled trout, Salvelinus fontinalis, Vol. 54. The University of Toronto Press, Toronto.

    Google Scholar 

  • Godby Jr., N. A., E. S. Rutherford & D. M. Mason, 2007. Diet, feeding rate, growth, mortality, and production of juvenile steelhead in a Lake Michigan tributary. North American Journal of Fisheries Management 27: 578–592.

    Article  Google Scholar 

  • Hansen, G. J. A., J. W. Gaeta, J. W. Hansen & S. R. Carpenter, 2015. Learning to manage and managing to learn: sustaining freshwater recreational fisheries in a changing environment. Fisheries 40: 56–64.

    Article  Google Scholar 

  • Hayes, D. B., W. W. Taylor, M. Drake, S. Marod & G. Whelan, 1998. The value of headwaters to brook trout (Salvelinus fontinalis) in the Ford River, Michigan, USA. In Haigh, M. J., J. Krecek, G. S. Rajwar & M. P. Kilmartin (eds), Headwaters: Water Resources and Soil Conservation. Oxford and IBH Publishing Co., New Delhi: 75–185.

    Google Scholar 

  • Hayes, D. B., H. Dodd & J. Lessard, 2006. Effects of small dams on cold water stream fish communities. In Nelson, J., J. J. Dodson, K. Friedland, T. R. Hamon, J. Musick & E. Verspoor (eds), Reconciling fisheries with conservation. American Fisheries Society, Bethesda: 587–602.

    Google Scholar 

  • Hayhoe, K., J. VanDorn, T. Croley, N. Schlegal & D. Wuebbles, 2010. Regional climate change projections for Chicago and the US Great Lakes. Journal of Great Lakes Research 36: 7–21.

    Article  Google Scholar 

  • Hershkovitz, Y., V. Dahm, A. W. Lorenz & D. Hering, 2015. A multi-trait approach for the identification and protection of European freshwater species that are potentially vulnerable to the impacts of climate change. Ecological Indicators 50: 150–160.

    Article  Google Scholar 

  • Holling, C. S., 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva: 104.

    Book  Google Scholar 

  • Isaak, D. J., S. Wollrab, D. Horan & G. Chandler, 2012. Climate change effects on streamand river temperatures across the northwestern US from 1980–2009 and implications for salmonid fishes. Climatic Change 113: 499–524.

    Article  Google Scholar 

  • Kanno, Y., B. H. Letcher, A. L. Rosner, K. P. O’Neil & K. H. Nislow, 2015. Environmental factors affecting brook trout occurrence in headwater stream segments. Transactions of the American Fisheries Society 144: 373–382.

    CAS  Article  Google Scholar 

  • Karas, N., 2015. Brook trout: a thorough look at North America’s great native trout – its history, biology, and angling possibilities. Skyhorse Publishing, New York.

    Google Scholar 

  • Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekell, K. T. Belt, D. H. Secor & R. L. Wingate, 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8: 461–466.

    Article  Google Scholar 

  • Knight, K., 2009. Land use planning for salmon, steelhead and trout. Washington Department of Fish and Wildlife. Olympia, Washington. [accessed 4 February 2019]. http://wdfw.wa.gov/publications/00033/wdfw00033.pdf.

  • Kurylyk, B. L., S. P. A. Bourque & K. T. B. MacQuarrie, 2013. Potential surface temperature and shallow groundwater temperature responses to climate change: an example from a small forested catchment in east-central New Brunswick (Canada). Hydrology and Earth Systems Sciences 17: 2701–2716.

    Article  Google Scholar 

  • Leach, J. A. & R. D. Moore, 2011. Stream temperature dynamics in two hydrogeomorphically distinct reaches. Hydrological Processes 25: 679–690.

    Article  Google Scholar 

  • LeBlanc, R. T., R. B. Brown & J. E. FitzGibbon, 1997. Modeling the effects of land use change on the water temperature in unregulated urban streams. Journal of Environmental Management 49: 445–469.

    Article  Google Scholar 

  • Loomis, J., P. Kent, L. Strange, K. Fausch & A. Covich, 2000. Measuring the total economic value of restoring ecosystem services in an impaired river basin: results from a contingent valuation survey. Ecological Economics 33: 103–117.

    Article  Google Scholar 

  • Lyons, J., J. S. Stewart & M. Mitro, 2010. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A. Journal of Fish Biology 77: 1867–1898.

    CAS  PubMed  Article  Google Scholar 

  • Maurer, E. P., L. Brekke, T. Pruitt & P. B. Duffy, 2007. Fine-resolution climate projections enhance regional climate change impact studies. Eos Transactions, American Geophysical Union 88: 504–504.

    Article  Google Scholar 

  • McKergow, L., S. Parkyn, R. Collins & P. Pattinson, 2005. Small headwater streams of the Auckland Region. Volume 2: hydrology and water quality. Auckland Regional Council 312: 1–67.

    Google Scholar 

  • Menberg, K., P. Blum, B. L. Kurylyk & P. Bayer, 2014. Observed groundwater temperature response to recent climate change. Hydrology and Earth System Sciences 18: 4453–4466.

    Article  Google Scholar 

  • Merriam, E. R., R. Fernandez, J. T. Petty & N. Zegre, 2017. Can brook trout survive climate change in large rivers? If it rains. Science of the Total Environment 607–608: 1225–1236.

    PubMed  Article  CAS  Google Scholar 

  • Neff, B. D., S. M. Day, A. R. Piggott & L. M. Fuller, 2005. Base flow in the Great Lakes basin. U.S. Geological Survey Scientific Investigations Report 2005–5217, Reston, Virginia, USA, 23 pp.

  • Onset Computer Corporation. 2009. HOBO U22 water temp pro v2: user’s manual. Document 10366-C. Onset Computer Corporation, Bourne, Massachusetts, USA.

  • Parry, M., O. Canziani, J. Palutikof, P. van der Linden & C. Hanson, 2007. Climate change 2007: impacts, adaptation and vulnerability. International Panel on Climate Change Fourth Assessment Report.

  • Paukert, C. P., B. A. Glazer, G. J. A. Hansen, B. J. Irwin, P. C. Jacobsen, J. L. Kershner, B. J. Shuter, J. E. Whitney & A. J. Lynch, 2016. Adapting inland fisheries management to a changing climate. Fisheries 41: 374–384.

    Article  Google Scholar 

  • Pease, A. A. & C. P. Paukert, 2014. Potential impacts of climate change on growth and prey consumption of stream-dwelling smallmouth bass in the central United States. Ecology of Freshwater Fish 23: 336–346.

    Article  Google Scholar 

  • Peterson, E. E. & J. M. Ver Hoef, 2010. A mixed-model moving-average approach to geostatistical modeling in stream networks. Ecology 91: 644–651.

    PubMed  Article  Google Scholar 

  • Primack, A. G. B., 2000. Simulation of climate-change effects on riparian vegetation in the Pere Marquette River, Michigan. Wetlands 20: 538–547.

    Article  Google Scholar 

  • Raleigh, R.F., 1982. Habitat Suitability Index Models: Brook Trout. U.S. Fish and Wildlife Service, Biological Report Number 82, Washington, D.C., USA, 42 pp.

  • RStudio. 2015. Boston (MA): RStudio, Inc; [accessed 13 April 2018]. http://www.rstudio.com/.

  • Santiago, J. M., D. G. de Jalón, C. Alonso, J. Solana, J. Ribalaygua, J. Pórtoles & R. Monjo, 2015. Brown trout thermal niche and climate change: expected changes in the distribution of cold-water fish in central Spain. Ecohydrology 9: 514–528.

    Article  Google Scholar 

  • Siitari, K. J., W. W. Taylor, S. A. C. Nelson & K. E. Weaver, 2011. The influence of land cover composition and groundwater on thermal habitat availability for brook charr (Salvelinus fontinalis) populations in the United States of America. Ecology of Freshwater Fish 20: 431–437.

    Article  Google Scholar 

  • Snyder, C. D., N. P. Hitt & J. A. Young, 2015. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecological Applications 25: 1397–1419.

    PubMed  Article  Google Scholar 

  • Steen, P. J., M. J. Wiley & J. S. Schaeffer, 2010. Predicting future changes in Muskegon River watershed game fish distributions under future land cover alteration and climate change scenarios. Transactions of the American Fisheries Society 139: 396–412.

    Article  Google Scholar 

  • Stoner, A. M. K., K. Hayhoe, X. H. Yang & D. J. Wuebbles, 2013. An asynchronous regional regression model for statistical downscaling of daily climate variables. International Journal of Climatology 33: 2473–2494.

    Article  Google Scholar 

  • United States Fish and Wildlife Service (USFWS), 2011. 2011 National survey of fishing, hunting, and wildlife-associated recreation. U.S. Department of the Interior, U.S. Fish and Wildlife Service, and U.S. Department of Commerce, U.S. Census Bureau, Washington, D.C.: 172.

    Google Scholar 

  • Waco, K. E. & W. W. Taylor, 2010. The influence of groundwater withdrawal and land use changes on brook charr (Salvelinus fontinalis) thermal habitat in two coldwater tributaries in Michigan, USA. Hydrobiologia 650: 101–116.

    Article  Google Scholar 

  • Webb, B. W., D. M. Hannah, R. D. Moore, L. E. Brown & F. Nobilis, 2008. Recent advances in stream and river temperature research. Hydrological Processes 22: 902–918.

    Article  Google Scholar 

  • Westhoff, J. T. & C. P. Paukert, 2014. Climate change simulations predict altered biotic response in a thermally heterogeneous stream system. PLoS ONE 9: e111438.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Westhoff, M. C., M. N. Gooseff, T. A. Bogaard & H. H. G. Savenije, 2011. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream. Water Resources Research 47: W10508.

    Article  Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2093–2106.

    Article  Google Scholar 

  • Zorn, T. G., P. W. Seelbach & M. J. Wiley, 2011. Developing user-friendly habitat suitability tools from regional stream fish survey data. North American Journal of Fisheries Management 31: 41–55.

    Article  Google Scholar 

Download references

Acknowledgements

The lead author thanks Bruce Vondracek (emeritus USGS Minnesota Cooperative Fish and Wildlife Research Unit, University of Minnesota) for inspiring him to become a fisheries scientist. We thank the Editors and Reviewers for helpful comments that improved this manuscript. We thank Jennifer Moore Myers (United States Forest Service Eastern Forest Environmental Threat Assessment Center) and Stacy Nelson and Ernie Hain (North Carolina State University) for assisting with air temperature data acquisition and projection models. We thank Kyle Herreman and Wesley Daniel (Michigan State University [MSU]); Troy Zorn, Tracy Kolb, and Todd Wills (Michigan Department of Natural Resources); and Henry Quinlan (United States Fish and Wildlife Service) for assisting in procurement of environmental and brook charr population data for this study. Further, we acknowledge the Programme for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling for their helpful guidance regarding use of the WCRP CMIP3 multimodel data set. We especially wish to thank Than Hitt (United States Geological Survey) for thought-provoking discussion at the 2015 conference “Advances in the Population Ecology of Stream Salmonids IV” that informed development of this paper. The first author thanks the many donors and funding sources that made it possible to conduct the research leading to this paper, including the University Distinguished Fellowship (MSU), the MSU Graduate School, the MSU Department of Fisheries and Wildlife, the Robert C. Ball and Betty A. Ball Fisheries and Wildlife Fellowship (MSU), the Schrems West Michigan Chapter of Trout Unlimited Fellowship, the Red Cedar Fly Fishers Graduate Fellowship, and the Fly Fishers International Conservation Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Carlson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: C. E. Adams, C. R. Bronte, M. J. Hansen, R. Knudsen & M. Power / Charr Biology, Ecology and Management

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carlson, A.K., Taylor, W.W. & Infante, D.M. Developing precipitation- and groundwater-corrected stream temperature models to improve brook charr management amid climate change. Hydrobiologia 840, 379–398 (2019). https://doi.org/10.1007/s10750-019-03989-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-03989-1

Keywords

  • Brook charr
  • Climate change
  • Coldwater streams
  • Groundwater
  • Growth
  • Precipitation
  • Survival