Skip to main content

Advertisement

Log in

Assessing community functional attributes during substrate colonization: a field experiment using stream insects

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Initial colonists of empty habitats tend to differ from those arriving later in terms of species identity and traits. We evaluated the dynamics of the functional attributes in aquatic insect communities during a colonization experiment under natural conditions. We tested whether the late stages of colonization show higher functional richness, diversity and specialization than early successional stages. We used 60 artificial slate samplers that were removed after 1, 3, 5, 10, 15 and 30 days of colonization. We considered five traits (with a total of 17 trait categories): feeding habits, dispersal medium, body size, body shape and locomotion. With these traits, we computed a global specialization index at the community level. Large shredders with a cylindrical body shape and fly dispersal while flying were prominent in late colonization. In contrast, early colonists tended to have flattened body and to disperse through water. Functional diversity and functional richness significantly increased in late colonization, resulting in a more specialized community. Our results suggest that any interference during the processes involved in stream insect colonization can be reflected in the community through the decrease or even lack of functional attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Clavel et al. (2010)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baer, S. G., E. R. Siler, S. Eggert & J. B. Wallace, 2001. Colonization and production of macroinvertebrates on artificial substrates: upstream–downstream responses to a leaf litter exclusion manipulation. Freshwater Biology 46: 347–365.

    Article  Google Scholar 

  • Baptista, D. F., D. F. Buss, L. G. Dias, J. L. Nessimian, E. R. Da Silva, A. H. A. MoraisNeto, S. N. Carvalho, M. A. Oliveira & L. R. Andrade, 2006. Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure mouthparts. Annales de Limnologie – International Journal of Limnology 42: 87–96.

    Article  Google Scholar 

  • Barsanti, L. & P. Gualtieri, 2006. Algae: Anatomy, Biochemistry, and Biotechnology. Taylor & Francis, Boca Raton.

    Google Scholar 

  • Bellisario, B., C. Carere, F. Angeletti, D. Nascetti & R. Cimmaruta, 2013. Infaunal macrobenthic community dynamics in a manipulated hyperhaline ecosystem: a long-term study. Aquatic Biosystems 9: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. Prepared for the New Zealand Ministry for the Environment. National Institute of Water and Atmospheric Research, Christchurch.

    Google Scholar 

  • Botta-Dukát, Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533–540.

    Article  Google Scholar 

  • Boyero, L. & J. Bosch, 2004. Multiscale spatial variation of stone recolonization by macroinvertebrates in a Costa Rican stream. Journal of Tropical Ecology 20: 85–95.

    Article  Google Scholar 

  • Braccia, A., S. L. Eggert & N. King, 2014. Macroinvertebrate colonization dynamics on artificial substrates along an algal resource gradient. Hydrobiologia 727: 1–18.

    Article  CAS  Google Scholar 

  • Cardinale, B. J., C. M. Smith & M. A. Palmer, 2001. The influence of initial colonization by hydropsychid caddisfly larvae on the development of stream invertebrate assemblages. Hydrobiologia 455: 19–27.

    Article  Google Scholar 

  • Castro, D. M., S. Dolédec & M. Callisto, 2017. Landscape variables influence taxonomic and trait composition of insect assemblages in Neotropical savanna streams. Freshwater Biology 62: 1472–1486.

    Article  CAS  Google Scholar 

  • Chang, C.-Y. & D. J. Marshall, 2017. Quantifying the role of colonization history and biotic interactions in shaping communities: a community transplant approach. Oikos 126: 204–211.

    Article  Google Scholar 

  • Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Clavel, J., R. Julliard & V. Devictor, 2010. Worldwide decline of specialist species: toward a global functional homogenization. Frontiers in Ecology and the Environment 9: 222–228.

    Article  Google Scholar 

  • Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465–1471.

    Article  Google Scholar 

  • Cummins, K. W. & G. H. Lauf, 1969. The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia 34: 145–181.

    Article  Google Scholar 

  • Decian, V. S., E. M. Zanin, C. H. Oliveira & F. R. Quadros, 2010. Diagnóstico ambiental do COREDE norte, RS: mapeamento do uso da terra na região Alto Uruguai eobtenção de banco de dados relacional de fragmentos devegetação arbórea. Ciência e Natura 32: 119–135.

    Google Scholar 

  • Devictor, V., R. Julliard, D. Couvet, A. Lee & F. Jiguet, 2007. Functional homogenization effect of urbanization on bird communities. Conservation Biology 21: 741–751.

    Article  PubMed  Google Scholar 

  • Devictor, V., R. Julliard & F. Jiguet, 2008. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117: 507–514.

    Article  Google Scholar 

  • Devictor, V., J. Clavel, R. Julliard, S. Lavergne, D. Mouillot, W. Thuiller, P. Venail, S. Villeger & N. Mouquet, 2010. Defining and measuring ecological specialization. Journal of Applied Ecology 47: 15–25.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 1998. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs 68: 237–257.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, key resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–587.

    Article  CAS  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Article  Google Scholar 

  • Fernández, H. R. & E. Domínguez, 2001. Guía para la determinación de los artrópodos bentónicos Sudamericano. Universidade de Tucumán, Tucumán.

    Google Scholar 

  • Fisher, D. O. & I. P. F. Owens, 2004. The comparative method in conservation biology. Trends in Ecology and Evolution 19: 391–398.

    Article  PubMed  Google Scholar 

  • Forister, M. L., L. A. Dyer, M. S. Singer, J. O. Stireman III & J. T. Lill, 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93: 981–991.

    Article  CAS  Google Scholar 

  • Futuyma, D. & G. Moreno, 1988. The evolution of ecological specialization. Annual Review of Ecology and Systematics 19: 207–223.

    Article  Google Scholar 

  • Gayraud, S., B. Statzner, P. Bady, A. Haybachp, F. Schöll, P. Usseglio-Polatera & M. Bacchi, 2003. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biology 48: 2045–2064.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.

    Article  Google Scholar 

  • Graça, M. A. S., P. Pinto, R. Cortes, N. Coimbra, S. Oliveira, M. Morais, M. J. Carvalho & J. Malo, 2004. Factors affecting macro-invertebrate richness and diversity in Portuguese streams: a two-scale analysis. International Review of Hydrobiology 89: 151–164.

    Article  Google Scholar 

  • Hamada, N., J. L. Nessimian & R. B. Querino, 2004. Insetos aquáticos na Amazônia brasileira : taxonomia, biologia e ecologia. Editora do INPA, Manaus.

    Google Scholar 

  • Heino, J., P. Louhi & T. Muotka, 2004. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshwater Biology 49: 1230–1239.

    Article  Google Scholar 

  • Hepp, L. U. & A. S. Melo, 2013. Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703: 239–246.

    Article  Google Scholar 

  • Hepp, L. U., S. V. Milesi, C. Biasi & R. M. Restello, 2010. Effects of agricultural and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia 27: 106–113.

    Article  Google Scholar 

  • Hepp, L. U., V. L. Landeiro & A. S. Melo, 2012. Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a neotropical stream. International Review of Hydrobiology 97: 157–167.

    Article  Google Scholar 

  • Holt, R. D., J. H. Lawton, G. A. Polis & N. D. Martinez, 1999. Trophic rank and the species–area relationship. Ecology 80: 1495–1504.

    Article  Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Article  Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Monographs in Population Biology. Princeton University Press, Princeton.

    Google Scholar 

  • Lammert, M. & J. D. Allan, 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23: 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Lecerf, A. & J. S. Richardson, 2010. Litter decomposition can detect effects of high and moderate levels of forest disturbance on stream condition. Forest Ecology and Management 259: 2433–2443.

    Article  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  Google Scholar 

  • Levins, R., 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press, Princeton.

    Google Scholar 

  • Le Viol, I., F. Jiguet, L. Brotons, S. Herrando, A. Lindström, J. W. Pearce-Higgins, J. Reif, C. Van Turnhout & V. Devictor, 2012. More and more generalists: two decades of changes in the European avifauna. Biology Letters 8: 780–782.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.

    Article  Google Scholar 

  • Melo, A. S., 2005. Effects of taxonomic and numeric resolution on the ability to detect ecological patterns at local scale using stream macroinvertebrates. Archives fur Hydrobiologie 164: 309–323.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Milesi, S. V. & A. S. Melo, 2014. Conditional effects of aquatic insects of small tributaries on mainstream assemblages: position within drainage network matters. Canadian Journal of Fisheries and Aquatic Sciences 71: 1–9.

    Article  Google Scholar 

  • Miyake, Y., T. Hiura, N. Kuhara & S. Nakano, 2003. Succession in a stream invertebrate community: a transition in species dominance through colonization. Ecological Research 18: 493–501.

    Article  Google Scholar 

  • Mondy, C. & P. Usseglio-Polatera, 2014. Using fuzzy-coded traits to elucidate the non random role of anthropogenic stress in the functional homogenisation of invertebrate assemblages. Freshwater Biology 59: 584–600.

    Article  Google Scholar 

  • Munday, P. L., G. P. Jones & M. J. Caley, 1997. Habitat specialization and the distribution and abundance of coral-dwelling gobies. Marine Ecology Progress Series 152: 227–239.

    Article  Google Scholar 

  • Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18–24.

    Article  PubMed  Google Scholar 

  • Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic systems: Recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14: 629–645.

    Article  Google Scholar 

  • Price, P. W., R. F. Denno, M. D. Eubanks, D. L. Finke & I. Kaplan, 2011. Insect ecology: behavior, populations and communities. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rader, R., 1997. A functional classification of the drift: traits that influence invertebrate availability to salmonids. Canadian Journal of Fisheries and Aquatic Sciences 54: 1211–1234.

    Article  Google Scholar 

  • Reynaga, M. C. & D. A. Santos, 2012. Rasgos biológicos de macroinvertebrados de ríos subtropicales: patrones de variación a lo largo de gradientes ambientales espaciotemporales. Ecologia Austral 2: 112–120.

    Google Scholar 

  • Salles, F. F., E. R. Da Silva, M. D. Hubbard & J. E. Serrão, 2004. As espécies de Ephemeroptera (Insecta) registradas para o Brasil. Biota Neotropica 4: 1–34.

    Google Scholar 

  • Schoener, T. W., 1974. Resource partitioning in ecological communities. Science 185: 27–39.

    Article  CAS  Google Scholar 

  • Simberloff, D. S., 1970. Taxonomic diversity of island biotas. Evolution 24: 23–47.

    Article  PubMed  Google Scholar 

  • Simberloff, D. S. & E. O. Wilson, 1970. Experimental zoogeography of islands. A two-year record of colonization. Ecology 51: 934–937.

    Article  Google Scholar 

  • The R Development Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3–900051 –07–0, URL http://www.R-project.org.

  • Tomanova, S. & P. Usseglio-Polatera, 2007. Patterns of benthic community traits in Neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology 170: 243–255.

    Article  Google Scholar 

  • Tonello, G., L. A. Naziloski, A. M. Tonin, R. M. Restello & L. U. Hepp, 2016. Effect of Phylloicus on leaf breakdown in a subtropical stream. Limnetica 35: 243–252.

    Google Scholar 

  • Tonin, A. M., L. U. Hepp, R. M. Restello & J. F. Gonçalves, 2014. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740: 79–88.

    Article  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.

    Article  Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  Google Scholar 

  • Wallace, J. B., M. R. Whiles, S. Eggert, T. F. Cuffney, G. L. Lugthart & K. Chung, 1995. Long-term dynamics of coarse particulate organic matter in three Appalachian mountain streams. Journal of the North American Benthological Society 14: 217–232.

    Article  Google Scholar 

  • Ward, J. V., 1975. Bottom fauna–substrate relationships in a northern Colorado trout stream: 1945 and 1974. Ecology 56: 1429–1434.

    Article  Google Scholar 

  • Williams, D. D., 1980. Some relationships between stream benthos and substrate heterogeneity. Limnology and Oceanography 25: 166–172.

    Article  Google Scholar 

  • Williams, D. & M. Smith, 1996. Colonization dynamics of river benthos in response to local changes in bed characteristics. Freshwater Biology 36: 237–248.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Luiz Ubiratan Hepp and Rafael Chaves Loureiro for their field assistance. SVM received a student scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) PDSE scholarship. ASM received research fellowships from CNPq (Proc. Nos. 309412/2014-5 and 307587/2017-7). This article was edited for proper English language, grammar, punctuation, spelling and overall style by editors and the service provided by this company: https://www.proof-reading-service.com/en/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia V. Milesi.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milesi, S.V., Melo, A.S. & Dolédec, S. Assessing community functional attributes during substrate colonization: a field experiment using stream insects. Hydrobiologia 838, 183–192 (2019). https://doi.org/10.1007/s10750-019-03988-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-03988-2

Keywords

Navigation