Trophic state assessment based on zooplankton communities in Mediterranean lakes

Abstract

Eutrophication assessment is made widely using Carlson Trophic State indices (TSI) [e.g. secchi disc depth (TSISD)] or phytoplankton biomass. Recently, two Carlson type indices using rotifers (TSIROT) and crustaceans (TSICR) were developed from Polish lakes. In the present study, both indices were applied to zooplankton communities from 16 Greek lakes, covering the entire trophic state spectrum, in order to test their application in a different climatic zone, the Mediterranean. The evaluation of the indices (TSIROT and TSICR) was made comparing the trophic state of each sampling/lake based on TSISD and mean summer phytoplankton biomass. Both indices increased across the eutrophication gradient but misclassify the trophic state. We propose a new index, TSIZOO, the average of the formulae TSIROT and TSICR which are significantly correlated with the eutrophication proxies. All three zooplanktonic indices can efficiently detect low (oligotrophic–mesotrophic) and high (eutrophic–hypertrophic) trophic state using the boundaries < 45 for TSIROT and TSIZOO and < 50 for TSICR. All zooplanktonic indices are promising and effective tools for monitoring and assessment of eutrophication of Mediterranean lakes when mean values are used. Still, TSIZOO should be preferred as the best index that correlated with eutrophication which had the best estimations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alonso, M., 1996. Crustacea, Branchiopoda. In Ramos, M. A., et al. (eds), Fauna Iberica, Vol. 7. Museo Nacional de Ciencias Naturales Consejo Superior de Investigaciones Cientificas, Madrid.

    Google Scholar 

  2. Alvarez Cobelas, M., C. Rojo & D. G. Angeler, 2005. Mediterranean limnology: current status, gaps and the future. Journal of Limnology 64: 13–29.

    Google Scholar 

  3. Amoros, C., 1984. Introduction pratique à la systématique des organismes des eaux continentales françaises -5- Crustacés Cladocères. Bulletin de la Société Linnéenne de Lyon 53: 71–145.

    Google Scholar 

  4. Azémar, F., T. Maris, B. Mialet, H. Segers, S. Van Damme, P. Meire & M. Tagkx, 2010. Rotifers in the Schelde estuary (Belgium): a test of taxonomic relevance. Journal of Plankton Research 32: 981–997.

    Google Scholar 

  5. Benzie, J. A. H., 2005. The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae). In Dumont, H. J. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 21. Kenobi Productions, Ghent & Backhuys Publishers, Leiden.

    Google Scholar 

  6. Boix, D., S. Gascón, J. Sala, M. Martinoy, J. Gifre & X. D. Quintana, 2005. A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian Peninsula). Aquatic Conservation: Marine and Freshwater Ecosystems 15: 635–651.

    Google Scholar 

  7. Bolawa, O. P., A. A. Adedej & Y. F. Taiwo, 2018. Temporal and Spatial Variations in Abundance and Diversity of Zooplankton Fauna of Opa Reservoir, Obafemi Awolowo University, Ile-Ife, Southwest Nigeria. Notulae Scientia Biologicae 10: 265–274.

    Google Scholar 

  8. Bolgrien, D. W., J. V. Scharold, T. R. Angradi, T. D. Corry, E. W. Schwieger & J. R. Kelly, 2009. Trophic status of three large Missouri river reservoirs. Lake Reservoir Manage 25: 176–190.

    Google Scholar 

  9. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, Α. Hillbright-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal οf Zoology 24: 419–456.

    Google Scholar 

  10. Callisto, M., J. Molozzi & J. L. E. Bardosa, 2014. In Ansari, A. A. & S. S. Gill (eds), Eutrophication: Causes, Consequences and Control. Springer, Dordrecht: 55–73.

    Google Scholar 

  11. Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.

    CAS  Google Scholar 

  12. Carlson, R. E. & J. Simpson, 1996. A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society, Madison.

    Google Scholar 

  13. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  14. Chrisafi, E., P. Kaspiris & G. Katselis, 2007. Feeding habits of sand smelt (Atherina boyeri, Risso 1810) in Trichonis Lake (Western Greece). Journal of Applied Ichthyology 23: 209–214.

    Google Scholar 

  15. Cieplinski, A., T. Weisse & U. Obertegger, 2017. High diversity in Keratella cochlearis (Rotifera, Monogononta): morphological and genetic evidence. Hydrobiologia 796: 145–159.

    Google Scholar 

  16. CIS, 2009. Guidance document on eutrophication assessment in the context of european water policies. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No 23. Luxembourg.

  17. Dembowska, E., P. Napiórkowski, T. Mieszczankin & S. Józefowicz, 2015. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecological Indicators 56: 15–22.

    Google Scholar 

  18. Downing, J. A. & F. H. Rigler, 1984. A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell Scientific, Oxford, UK.

    Google Scholar 

  19. Duggan, I. C., J. D. Green & K. Thomasson, 2001. Do rotifers have potential as bioindicators of lake trophic state? Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27: 3497–3502.

    Google Scholar 

  20. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    PubMed  Google Scholar 

  21. Dunalska, J. A., A. Napiórkowska-Krzebietke, A. Ławniczak-Malińska, E. Bogacka-Kapusta & G. Wiśniwski, 2018. Restoraton of flow-through lakes – Theory and practice. Ecology & Hydrobiology. https://doi.org/10.1016/j.ecohyd.2018.06.009.

    Article  Google Scholar 

  22. Dussart, B. H., 1967a. Les copépodes des eaux continentales d’ Europe occidentale. Tome I: calanoïds et Harpacticoïdes. N. Boublée & Cie. Eds., Paris.

    Google Scholar 

  23. Dussart, B. H., 1967b. Les Copépodes des Eaux continentales d’ Europe occidentale. Tome II: Cyclopoïdes et Biologie. N. Boublée & Cie. Eds, Paris.

    Google Scholar 

  24. Dussart, B. H. & D. Defaye, 2001. Introduction to the Copepoda. In Dumont, H. J. F. (ed.), Guides to the Identification of the Macroinvertebrates of the Continental Waters of the World 16. Backhuys Publishers, Leiden.

    Google Scholar 

  25. EC, 2008. Commission Decision of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European Parliament and the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise 2008/915/EC. Official Journal of the European Communities, L332/20. European Commission, Brussels.

  26. Einsle, U., 1996. Copepoda: Cyclopoida Cyclops, Megacyclops, Acanthocyclops. In Dumont, H. J. F. (ed), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 10. SPB Academic Publishing bv, Amsterdam.

    Google Scholar 

  27. Ejsmont-Karabin, J., 2012. The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index. Polish Journal of Ecology 60: 339–350.

    Google Scholar 

  28. Ejsmont-Karabin, J. & A. Karabin, 2013. The suitability of zooplankton as lake ecosystem indicators: crustacean trophic state index. Polish Journal of Ecology 61: 561–573.

    Google Scholar 

  29. García-Chicote, J., X. Armengol & C. Rojo, 2018. Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69: 46–54.

    Google Scholar 

  30. Geraldes, A. M. & R. Pasupuleti, 2016. Zooplankton: a valuable environmental indicator tool in reservoir ecological management? Asian Journal of Environment & Ecology 1: 1–9.

    Google Scholar 

  31. Gopko, M. & I. V. Telesh, 2013. Estuarine trophic state assessment: new plankton index based on morphology of Keratella rotifers. Estuarine, Coastal and Shelf Science 130: 222–230.

    Google Scholar 

  32. Gulati, R. D., 1983. Zooplankton and its grazing as indicators of trophic status in Dutch lakes. Environmental Monitoring and Assessment 3: 343–354.

    CAS  PubMed  Google Scholar 

  33. Gutiérrez, S. G., S. S. S. Sarma & S. Nandini, 2017. Seasonal variations of rotifers from a high altitude urban shallow waterbody, La Cantera Oriente (Mexico City, Mexico). Chinese Journal of Oceanology and Limnology 35: 1387–1397.

    Google Scholar 

  34. Gutkowska, A., E. Paturej & E. Kowalska, 2013. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters. Oceanologia 55: 887–899.

    Google Scholar 

  35. Haberman, J. & M. Haldna, 2014. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. Journal of Limnology 73: 263–273.

    Google Scholar 

  36. Havens, K. E., 2014. Lake eutrophication and plankton food webs. In Ansari, A. A. & S. S. Gill (eds), Eutrophication: Causes, Consequences and Control, Vol. 2. Springer, Dordrecht: 73–80.

    Google Scholar 

  37. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalge. Journal of Phycology 35: 403–424.

    Google Scholar 

  38. Huber-Pestalozzi, G., 1938. Das Phytoplankton des Süsswassers. Systematik und Biologie. In: Thienemann A, ed Die Binn Eugewässer. Stuttgart.

  39. International Commission on Zoological Nomenclature. [available on internet at http://iczn.org/lan/rotifer] accessed June 2018.

  40. Jekatierynczuk-Rudczyk, E., P. Zieliński, M. Grabowska, J. Ejsmont-Karabin, M. Karpowicz & A. Więcko, 2014. The trophic status of Suwałki Landscape Park lakes based on selected parameters (NE Poland). Environmental Monitoring and Assessment 186: 5101–5121.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.

    Google Scholar 

  42. Jersabek, C. D. & M. F. Leitner, 2013. The Rotifer World Catalog. World Wide Web electronic Publication. [available on internet at http://www.rotifera.hausdernatur.at/], accessed June 2018.

  43. Kane, D. D., S. I. D. Gordon, M. Munawar, M. N. Charlton & D. A. Culver, 2009. The Planktonic Index of Biotic Integrity (P-IBI): an approach for assessing lake ecosystem health. Ecological Indicators 9: 1234–1247.

    CAS  Google Scholar 

  44. Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska 33: 567–616.

    Google Scholar 

  45. Katsiapi, M., M. Moustaka-Gouni & U. Sommer, 2016. Assessing ecological water quality of freshwaters: PhyCoI – a new phytoplankton community index. Ecological Informatics 31: 22–29.

    Google Scholar 

  46. Kiefer, F., 1968. Versuch einer revision der gattung Eudiaptomus Kiefer (Copepoda Calanoida). Memorie dell’ Istulo Italiano di Idrobiologia 24: 9–160.

    Google Scholar 

  47. Kiefer, F., 1971. Revision der Bacillifer - gruppe der gattung Arctodiaptomus Kiefer (Crustacea Copepoda: Calanoida). Memorie dell’ Istulo Italiano di Idrobiologia 27: 113–267.

    Google Scholar 

  48. Korovchinsky, N. M., 1992. Sididae and Holopedidae (Crustacea: Daphniformes). Guides to the Identification of the Microinvertebrate of the Continental Waters of the World. SPB Academics, The Hague.

    Google Scholar 

  49. Koste, W., 1978. Rotatoria, die Rãdertiere Mitteleuropas. Gebrüder Borntraeger, Berlin.

    Google Scholar 

  50. Kotov, A., L. Forró, N. M. Korovchinsky & A. Petrusek, 2013. World checklist of freshwater Cladocera species. World Wide Web electronic publication. [available on internet at http://fada.biodiversity.be/group/show/17], accessed September 2018.

  51. Kruskopf, M. & K. J. Flynn, 2006. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist 169: 841–842.

    Google Scholar 

  52. Kulkarini, D., A. Gergs, U. Hommen, H. T. Ratte & T. G. Preuss, 2013. A plea for the use of copepods in freshwater ecotoxicology. Environmental Science and Pollution Research 20: 75–85.

    Google Scholar 

  53. Lyche-Solheim, A., C. K. Feld, S. Birk, G. Phillips, L. Carvalho, G. Morabito, U. Mischke, N. Willby, M. Søndergaard, S. Hellsten, A. Kolada, M. Mjelde, J. Böhmer, O. Miler, M. T. Pusch, C. Argillier, E. Jeppesen, T. L. Lauridsen & S. Poikane, 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704: 57–74.

    Google Scholar 

  54. Marszelewski, W., E. A. Dembowska, P. Napiórkowski & A. Solarczyk, 2017. Understanding abiotic and biotic bonditions in Post-Mining Pit lakes for efficient management: a case study (Poland). Hydrobiologia 36: 418–428.

    CAS  Google Scholar 

  55. Mash, H., P. K. Westerhoff, L. A. Baker, R. A. Nieman & M.-L. Nguyen, 2004. Dissolved organic matter in Arizona reservoirs: assessment of carbonaceous sources. Organic Chemistry 35: 831–843.

    CAS  Google Scholar 

  56. Mazaris, A. D., M. Moustaka-Gouni, E. Michaloudi & D. C. Bobori, 2010. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. Journal of Biogeography 37: 1341–1351.

    Google Scholar 

  57. Michaloudi, E., 2005. Dry weights of the zooplankton of Lake Mikri Prespa (Macedonia, Greece). Belgian Journal of Zoology 135: 223–227.

    Google Scholar 

  58. Moreno-Gutiérrez, R. M., S. S. S. Sarma, A. S. Sobrino-Figueroa & S. Nandini, 2018. Population growth potential of rotifers from a high altitude eutrophic waterbody, Madín reservoir (State of Mexico, Mexico): the importance of seasonal sampling. Journal of Limnology. https://doi.org/10.4081/jlimnol.2018.1823.

    Article  Google Scholar 

  59. Moss, B., D. Stephen, C. Alvarez, E. Becares, W. van de Bund, S. E. Collings, E. van Donk, E. de Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Franken, F. García-Criado, E. M. Gross, M. Gyllström, L. A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijów, T. Krause, H. Künnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Nõges, T. Nõges, M. Nykänen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujõe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine Freshwater Ecosystem 13: 507–549.

    Google Scholar 

  60. Moustaka-Gouni, M., 1989. Temporal and spatial distribution of chlorophyll a in lake Volvi, Greece. Archiv für Hydrobiologie Supplement 82: 475–485.

    Google Scholar 

  61. Moustaka-Gouni, M., E. Michaloudi & U. Sommer, 2014. Modifying the PEG model for Mediterranean lakes – no biological winter and strong fish predation. Freshwater Biology 59: 1136–1144.

    Google Scholar 

  62. Nogrady, T. & H. Segers, 2002. Rotifera Volume 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 18. Backhuys Publishers, Leiden.

    Google Scholar 

  63. Nogrady, T., R. Pourriot & H. Segers, 1995. The Notommatidae and the Scaridiidae. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 8. SPB Academic Publishing BV, Amsterdam.

    Google Scholar 

  64. Ochocka, A. & A. Pasztaleniec, 2016. Sensitivity of plankton indices to lake trophic conditions. Environmental Monitoring and Assessment 188: 622.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. OECD, Organisation for Economic Co-operation and Development, 1982. Eutrophication of Waters: Monitoring, Assessment and Control. OECD, Paris.

    Google Scholar 

  66. Pahissa, J., J. Catalan, G. Morabito, G. Dörflinger, J. Ferreira, C. Laplace-Treyture, R. Gîrbea, A. Marchetto, P. Polykarpou & C. de Hoyos, 2015. Benefits and limitations of an intercalibration of phytoplankton assessment methods based on the Mediterranean GIG reservoir experience. Science of the Total Environment 538: 169–179.

    CAS  PubMed  Google Scholar 

  67. Pejler, B., 1983. Zooplanktic indicators of trophy and their food. Hydrobiologia 101: 111–114.

    Google Scholar 

  68. Petriki, O., M. Lazaridou & D. Bobori, 2017. A fish-based index for the assessment of the ecological quality of temperate lakes. Ecological Indicators 78: 556–565.

    CAS  Google Scholar 

  69. Reddy, Y. R., 1994. Copepoda: Calanoida: Diaptomidae Key to the genera Heliodiaptomus, Allodiaptomus, Neodiaptomus, Phyllodiaptomus, Eodiaptomus, Arctodiaptomus and Sinodiaptomus. SPB Academic Publishing, The Hague.

    Google Scholar 

  70. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  71. Ricci, C. & G. Melone, 2000. Key to the identification of the genera of bdelloid rotifers. Hydrobiologia 418: 73–80.

    Google Scholar 

  72. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 8: 71–76.

    Google Scholar 

  73. Sarma, S. S. & S. Nandini, 2006. Review of Recent Ecotoxicological Studies on Cladocerans. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 41: 1417–1430.

    CAS  Google Scholar 

  74. Segers, H., 1995. Rotifera. Vol. 2: The Lecanidae (Monogononta). In Dumont, H. J. F. (ed), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing BV, The Hague.

    Google Scholar 

  75. Segers, H., W. H. De Smet, C. Fischer, D. Fontaneto, E. Michaloudi, R. L. Wallace & C. D. Jersabek, 2012. Towards a list of available names in zoology, partim Phylum Rotifera. Zootaxa 3179: 61–68.

    Google Scholar 

  76. Sládecek, V., 1983. Rotifers as indicators of water quality. Hydrobiologia 100: 169–201.

    Google Scholar 

  77. Smith, V. H., 2003. Eutrophication of freshwater and coastal ecosystems: a global problem. Environmental Science and Pollution Research 10: 126–139.

    CAS  PubMed  Google Scholar 

  78. Snell, T. W. & C. Joaquim-Justo, 2007. Workshop on rotifers in ecotoxicology. Hydrobiologia 593: 227–232.

    Google Scholar 

  79. Stamou, G., C. Polyzou, A. Karagianni & E. Michaloudi, 2017. Taxonomic distinctness indices for discriminating patterns in freshwater rotifer assemblages. Hydrobiologia 796: 319–331.

    Google Scholar 

  80. Taggart, C. T., 1984. Hypolimnetic aeration and zooplankton distribution: a possible limitation to the restoration of cold-water fish production. Canadian Journal of Fisheries and Aquatic Sciences 41: 191–198.

    Google Scholar 

  81. Tikkanen, T., 1986. Kasviplanktonopas. Suomen Luonnonsuojelun Tuki Oy, Helsinki.

    Google Scholar 

  82. Utermöhl, H., 1958. Zur Vervollkommnung der quantitative Phytoplanktonmethodik. Mitteilungen Internationale Vereinigung Theorie Angewandte Limnologie 9: 1–38.

    Google Scholar 

  83. Vardaka, E., M. Moustaka-Gouni, C. M. Cook & T. Lanaras, 2005. Cyanobacterial blooms and water quality in Greek waterbodies. Journal of Applied Phycology 17: 391–401.

    Google Scholar 

  84. Walter, T. C. & G. Boxshall, 2018. World of Copepods database. [available on internet at http://www.marinespecies.org/], accessed September 2018.

  85. Wetzel, R. G., 2001. Limnology, 3rd ed Academic Press, San Diego, CA.

    Google Scholar 

  86. Wolfram, G., C. Argillier, J. De Bortoli, G. Buzzi, M. T. Dokulil, E. Hoehn, A. Marchetto, P. J. Martinez, G. Morabito, M. Reichmann, S. Remec-Rekar, U. Riedmüller, C. Rioury, J. Schaumburg, L. Schulz & G. Urbanic, 2009. Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes. Hydrobiologia 633: 45–58.

    CAS  Google Scholar 

Download references

Acknowledgements

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme « Human Resources Development, Education and Lifelong Learning » in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evangelia Michaloudi.

Additional information

Guest editors: Steven A. J. Declerck, Diego Fontaneto, Rick Hochberg & Terry W. Snell / Crossing Disciplinary Borders in Rotifer Research

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Supplementary material 2 (XLSX 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stamou, G., Katsiapi, M., Moustaka-Gouni, M. et al. Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 844, 83–103 (2019). https://doi.org/10.1007/s10750-018-3880-9

Download citation

Keywords

  • Carlson Trophic State indices
  • TSICR
  • TSIZOO
  • TSIROT
  • Greek lakes
  • Eutrophication