Comparative population dynamics of six brachionid rotifers (Rotifera) fed seston from a hypertrophic, high altitude shallow waterbody from Mexico

Abstract

In hypertrophic waterbodies, seston may be an important food for planktonic rotifers. Therefore, we hypothesized that seston in the hypertrophic waterbody (Lake Xochimilco, State of Mexico) supports high diversity and density of rotifers. To test this, we conducted growth experiments using six rotifer species (Brachionus bidentatus, Brachionus budapestinensis, Brachionus calyciflorus, Brachionus caudatus, Brachionus havanaensis and Plationus patulus) cultured on three seston size fractions (< 3, 3–15 and < 15 µm) for 15 days. The three fractions of seston contained 3.15, 6.30, and 9.45 μg C ml−1, respectively. The physical and chemical variables of the waterbody were fairly stable during the study period. Brachionus budapestinensis, B. calyciflorus and B. caudatus showed negative growth rates when cultured on seston size of 3–15 or < 15 µm, while B. bidentatus had negative r on < 3 µm particle size. Brachionus havanaensis and P. patulus were well adapted to feed on different sizes of seston, while B. budapestinensis and B. caudatus had higher growth on < 3 µm particle size. These results explain the high diversity and density of brachionid rotifers in this waterbody where they coexist by partitioning the available seston.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adebayo, E. A. & D. Martínez-Carrera, 2015. Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. African Journal of Biotechnology 14(1): 52–67.

    CAS  Article  Google Scholar 

  2. Athibai, S. & L.-O. Sanoamuang, 2008. Effect of temperature on fecundity, life span and morphology of long- and short-spined clones of Brachionus caudatus f. apsteini (Rotifera). International Review of Hydrobiology 93(6): 690–699.

    Article  Google Scholar 

  3. Bogdan, K. G. & J. J. Gilbert, 1982. Seasonal patterns of feeding by natural-populations of Keratella, Polyarthra, and Bosmina – clearance rates, selectivities, and contributions to community grazing. Limnology and Oceanography 27: 918–934.

    Article  Google Scholar 

  4. Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal biotechnology. Cambridge University Press, London.

    Google Scholar 

  5. De Pauw, N., J. Morales & G. Persoone, 1984. Mass culture of microalgae in aquaculture systems: progress and constraints. Hydrobiologia 116: 121–134.

    Article  Google Scholar 

  6. Declerck, S., M. Vanderstukken, S. Pals, K. Muylaert & L. De Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88(9): 2199–2210.

    CAS  Article  Google Scholar 

  7. DeMott, W. R., 1989. The role of competition in zooplankton succession. In Sommer, U. (ed.), Plankton ecology: succession in plankton communities. Springer, New York: 195–252.

    Google Scholar 

  8. Doohan, M., 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia 13(4): 351–362.

    Article  Google Scholar 

  9. Dumont, H. J., S. S. S. Sarma & A. J. Ali, 1995. Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwater Biology 33: 39–46.

    Article  Google Scholar 

  10. Ejsmont-Karabin, J., R. D. Gulati & J. Rooth, 1989. Is food availability the main factor controlling the abundance of Euchlanis dilatata lucksiana Hauer in a shallow, hypertropic lake? Hydrobiologia 186(187): 29–34.

    Article  Google Scholar 

  11. Gayosso-Morales, M. A., S. Nandini, F. F. Martínez-Jeronimo & S. S. S. Sarma, 2017. Effect of organic and inorganic turbidity on the zooplankton community structure of a shallow waterbody in Central Mexico (Lake Xochimilco, Mexico). Journal of Environmental Biology 38(6): 1183–1196.

    Article  Google Scholar 

  12. Gulati, R. & W. DeMott, 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology 38(3): 753–768.

    Article  Google Scholar 

  13. Gulati, R. D., J. Rooth & J. Ejsmont-Karabin, 1987. A laboratory study of feeding and assimilation in Euchlanis dilatata lucksiana. Hydrobiologia 147: 289–296.

    Article  Google Scholar 

  14. Jiménez-Contreras, J., S. Nandini & S. S. S. Sarma, 2018. Diversity of Rotifera (Monogononta) and egg ratio of selected taxa in the canals of Xochimilco (Mexico City). Wetlands 38: 1033–1044.

    Article  Google Scholar 

  15. Kerfoot, W. C., W. R. DeMott & C. Levitan, 1985. Non-linearities in competitive interactions: component variables or system response. Ecology 66: 959–965.

    Article  Google Scholar 

  16. Kirk, K. L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72(3): 915–923.

    Article  Google Scholar 

  17. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5): 1741–1755.

    Article  Google Scholar 

  18. Krebs, C. J., 1985. Ecology; the experimental analysis of distribution and abundance, 3rd ed. Harper & Row, New York.

    Google Scholar 

  19. Lamberti, G.A. & F.R. Hauer, 2017. Methods in Stream Ecology. In Ecosystem Function, Vol. 2, 3rd edn, Elsevier, London.

  20. Lucía-Pavón, E., S. S. S. Sarma & S. Nandini, 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Revista de Biología Tropical 49(3–4): 895–902.

    PubMed  PubMed Central  Google Scholar 

  21. Miracle, M. R., E. Vicente, S. S. S. Sarma & S. Nandini, 2014. Planktonic rotifer feeding in hypertrophic conditions. International Review of Hydrobiology 99: 141–150.

    Article  Google Scholar 

  22. Müller-Navarra, D. C., M. T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita & C. R. Goldman, 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.

    Article  Google Scholar 

  23. Nandini, S., P. Ramírez-García & S. S. S. Sarma, 2005. Seasonal variations in the species diversity of planktonic rotifers in Lake Xochimilco, Mexico. Journal of Freshwater Ecology 20(2): 287–294.

    Article  Google Scholar 

  24. Nandini, S., S. S. S. Sarma, R. J. Amador-López & S. Bolaños-Muñoz, 2007. Population growth and body size in five rotifer species in response to variable food concentration. Journal of Freshwater Ecology 22: 1–10.

    Article  Google Scholar 

  25. Nandini, S., P. Ramírez-García & S. S. S. Sarma, 2016. Water quality indicators in Lake Xochimilco, Mexico: zooplankton and Vibrio cholera. Journal of Limnology 75(1): 91–100.

    Google Scholar 

  26. Onandia, G., J. D. Dias & M. R. Miracle, 2015. Zooplankton grazing on natural algae and bacteria under hypertrophic conditions. Limnetica 34(2): 541–560.

    Google Scholar 

  27. Ooms-Wilms, A. L., 1997. Are bacteria an important food source for rotifers in eutrophic lakes? Journal of Plankton Research 19(8): 1125–1141.

    Article  Google Scholar 

  28. Pavón-Meza, E. L., S. S. S. Sarma & S. Nandini, 2004. Combined effects of food (Chlorella vulgaris) concentration and temperature on the population growth of Brachionus havanaensis (Rotifera: Brachionidae). Journal of Freshwater Ecology 19(4): 521–530.

    Article  Google Scholar 

  29. Pilarska, J., 1977. Eco-physiological studies on Brachionus rubens Ehrbg. (Rotatoria). III. Energy balances. Polskie Archiwum Hydrobiologii 24: 343–354.

    Google Scholar 

  30. Pourriot, R., 1965. Recherches sur l’écologie des Rotifères. Publications du laboratoire Arago. Volume 4349. Thèses présentées à la Faculté des Sciences de l’Université de Paris, Paris.

  31. Regali-Seleghim, M. H. & M. J. L. Godinho, 2004. Peritrich epibiont protozoans in the zooplankton of a subtropical shallow aquatic ecosystem (Monjolinho Reservoir, São Carlos, Brazil). Journal of Plankton Research 26(5): 501–508.

    Article  Google Scholar 

  32. Sarma, S. S. S., 1991. Rotifers and aquaculture (review). Environment and Ecology 9: 414–428.

    Google Scholar 

  33. Sarma, S. S. S., P. S. Larios-Jurado & S. Nandini, 2001. Effect of three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Revista de Biología Tropical 49(1): 75–82.

    Google Scholar 

  34. Sarma, S. S. S., A. E. Fuentes-Barradas, S. Nandini & D. J. Chaparro-Herrera, 2017. Feeding behaviour of larval Ambystoma granulosum (Amphibia: Caudata). Journal of Environmental Biology 38(6): 1241–1248.

    Article  Google Scholar 

  35. Sarma, S. S. S., J. A. Guevara-Franco, B. Almaraz-Ornelas & S. Nandini, 2018. Interspecific effects of allelochemicals of 4-species of Brachionidae (Rotifera: Monogononta) on the population growth. Allelopathy Journal 45(2): 277–290.

    Article  Google Scholar 

  36. Starkweather, P. L., J. J. Gilbert & T. M. Frost, 1979. Bacterial feeding by the rotifer Brachionus calyciflorus: clearance and ingestion rates, behavior and population dynamics. Oecologia 44(1): 26–30.

    Article  Google Scholar 

  37. Stephan-Otto, E., 2003. El Agua en la Cuenca de México. Sus problemas históricos y perspectivas de solución. Proceedings of the Second International Conference on Xochimilco, Vol. 1. Ecological Park of Xochimilco, Mexico City, Mexico.

  38. Wallace, R. L. & T. W. Snell, 2010. Rotifera. In Thorp, J. & A. Covich (eds), Ecology and Classifications of North American Freshwater Invertebrates, 3rd ed. Elsevier, Oxford: 173–235.

    Google Scholar 

  39. Wilms, A. L., R. D. Gulati & G. Postema, 1991. First attempt to measure the clearance rate of Anuraeopsis fissa. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 24: 742–744.

    Google Scholar 

  40. Yoshinaga, T., A. Hagiwara & K. Tsukamoto, 2001. Why do rotifer populations present a typical sigmoid growth curve? Hydrobiologia 446(447): 99–105.

    Article  Google Scholar 

Download references

Acknowledgements

Three anonymous reviewers and handling editor(s) have greatly improved our presentation. We also thank DGAPA—PAPIIT (IN214618 & IN219218) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. S. S. Sarma.

Additional information

Guest editors: Steven A. J. Declerck, Diego Fontaneto, Rick Hochberg & Terry W. Snell / Crossing Disciplinary Borders in Rotifer Research

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarma, S.S.S., Nandini, S. Comparative population dynamics of six brachionid rotifers (Rotifera) fed seston from a hypertrophic, high altitude shallow waterbody from Mexico. Hydrobiologia 844, 55–65 (2019). https://doi.org/10.1007/s10750-018-3875-6

Download citation

Keywords

  • Brachionus
  • Plationus
  • Population growth
  • Rate of population increase
  • Lake Xochimilco