, Volume 830, Issue 1, pp 243–254 | Cite as

Comparison of the propensity to drift for three invertebrate taxa: a laboratory study

  • Elorri ArevaloEmail author
  • Aitor Larrañaga
  • Margaret Lang
  • Etienne Prevost
  • Agnès Bardonnet
Primary Research Paper


Invertebrate drift is an important ecological process but factors affecting the downstream transport of invertebrates are difficult to assess. The influence of water velocity on drift entry rates is still unclear and has rarely been quantified. In this study, conducted in spring and autumn, we investigated the drift propensity for different sizes of Baetis, Simulium and Chironomus larvae which, over a 24-h period, were subjected to low, moderate or high water velocities (14, 30 and 40 cm s−1, respectively) in either fine or coarse gravel beds. Interspecific differences were detected: Baetis drifted the most, Chironomus showed intermediate values and Simulium drifted the least. Chironomus was the only taxon that responded to water velocity. Baetis and Simulium were only slightly constrained to drift by the experimental conditions, while, in contrast, Chironomus larvae were very sensitive to flow increase. Substrate size (fine/coarse gravel bed) had no effect on any taxa. Small Simulium and Chironomus drifted more than larger ones. A seasonal effect was also detected, with Baetis drifting more in fall and Simulium drifting more in spring. Results suggest that community structure may be as or more important than hydraulics as a determinant of drift rates.


Aquatic invertebrates Water velocity Substrate size Invertebrate size Season 



We are extremely thankful to the referees for their constructive comments. The authors declare no conflicts of interest. E. Arevalo benefits from a cross-border grant (Univ Pau & Pays Adour/UPV) and from Mérimée, a programme funded by the French Embassy. Experiments were carried out thanks to the IE ECP facilities and financially supported by CG64 and INRA Ecoserv Metaprogram. We wish to thank F. Gueraud, P. Coste, E. Huchet and J. Rives for their help with the experimental set-up and invertebrate sampling, J. Labonne for his comments on the manuscript and J. Almany for correcting the English manuscript.

Supplementary material

10750_2018_3870_MOESM1_ESM.docx (104 kb)
Supplementary material 1 (DOCX 103 kb)


  1. Abràmoff, M. D., P. J. Magalhães & S. J. Ram, 2004. Image processing with imageJ. Biophotonics International 11: 36–41.Google Scholar
  2. Allan, J. D., 1984. The size composition of invertebrate drift in a rocky mountain stream. Oikos 43: 68–76.CrossRefGoogle Scholar
  3. Anderson, N. H. & D. M. Lehmkuhl, 1968. Catastrophic drift of insects in a woodland stream. Ecology 49: 198–206.CrossRefGoogle Scholar
  4. Bass, D., 1986. Habitat ecology of chironomid larvae of the Big Thicket streams. Hydrobiologia 134: 29–41.CrossRefGoogle Scholar
  5. Berg, M. B., 1995. Larval Food and Feeding Behaviour the Chironomidae: Biology and Ecology of Non-biting Midges. Springer, Netherlands: 136–168.Google Scholar
  6. Bowles, D. E. & R. A. Short, 1988. Size composition of invertebrate drift and fish predation in a Texas stream. Southwestern Naturalist 33: 177–184.CrossRefGoogle Scholar
  7. Brannin, M. T., M. K. O’Donnell & J. Fingerut, 2014. Effects of larval size and hydrodynamics on the growth rates of the black fly Simulium tribulatum. Integrative zoology 9: 61–69.CrossRefGoogle Scholar
  8. Brittain, J. & T. Eikeland, 1988. Invertebrate drift—a review. Hydrobiologia 166: 77–93.CrossRefGoogle Scholar
  9. Charpentier, B. & A. Morin, 1994. Effect of current velocity on ingestion rates of black fly larvae. Canadian Journal of Fisheries and Aquatic Sciences 51: 1615–1619.CrossRefGoogle Scholar
  10. Ciborowski, J. J. & D. A. Craig, 1989. Factors influencing dispersion of larval black flies (Diptera: Simuliidae): effects of current velocity and food concentration. Canadian Journal of Fisheries and Aquatic Sciences 46: 1329–1341.CrossRefGoogle Scholar
  11. Cure, V., 1985. Chironomidae (Diptera-Nematocera) aus Rumänien unter besonderer Berücksichtigung jener aus dem hydrographischen Einzugsgebiet der Donau. Veröffentlichungen der Arbeitsgemeinschaft Donauforschung: 163–217.Google Scholar
  12. De Block, M., M. McPeek & R. Stoks, 2007. Winter compensatory growth under field conditions partly offsets low energy reserves before winter in a damselfly. Oikos 116: 1975–1982.CrossRefGoogle Scholar
  13. Duan, X. H., Z. Y. Wang, M. Z. Xu & K. Zhang, 2009. Effect of streambed sediment on benthic ecology. International Journal of Sediment Research 24: 325–338.CrossRefGoogle Scholar
  14. Elliott, J. M., 1967. The food of trout (Salmo trutta) in a Dartmoor stream. Journal of Applied Ecology 4: 59–71.CrossRefGoogle Scholar
  15. Elliott, J. M., 1970. Diel changes in invertebrate drift and the food of trout Salmo trutta L. Journal of Fish Biology 2: 161–165.CrossRefGoogle Scholar
  16. Fenoglio, S., F. Boano, T. Bo, R. Revelli & L. Ridolfi, 2013. The impacts of increasing current velocity on the drift of Simulium monticola (Diptera: Simuliidae): a laboratory approach. Italian Journal of Zoology 80: 443–448.CrossRefGoogle Scholar
  17. Finelli, C. M., D. D. Hart & R. A. Merz, 2002. Stream insects as passive suspension feeders: effects of velocity and food concentration on feeding performance. Oecologia 131: 145–153.CrossRefGoogle Scholar
  18. Fingerut, J. T., D. M. Fonseca, J. R. Thomson & D. D. Hart, 2015. Seeking shelter from the storm: responses of benthic stream invertebrates to natural and experimental floods. Freshwater Science 34: 897–908.CrossRefGoogle Scholar
  19. Fjellheim, A., 1996. Distribution of benthic invertebrates in relation to stream flow characteristics in a Norwegian river. Regulated Rivers-Research & Management 12: 263–271.CrossRefGoogle Scholar
  20. Fonseca, D. M. & D. D. Hart, 1996. Density-dependent dispersal of black fly neonates is mediated by flow. Oikos 75: 49–58.CrossRefGoogle Scholar
  21. Fonseca, D. M. & D. D. Hart, 2001. Colonization history masks habitat preferences in local distributions of stream insects. Ecology 82: 2897–2910.CrossRefGoogle Scholar
  22. Gee, J. H., 1982. Resource utilization by Gammarus pulex (Amphipoda) in a Cotswold stream: a microdistribution study. The Journal of Animal Ecology 51: 817–831.CrossRefGoogle Scholar
  23. Gelman, A. & J. Hill, 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Policy Analysis.CrossRefGoogle Scholar
  24. Gibbins, C. N., E. Scott, C. Soulsby & I. McEwan, 2005. The relationship between sediment mobilisation and the entry of Baetis mayflies into the water column in a laboratory flume. Hydrobiologia 533: 115–122.CrossRefGoogle Scholar
  25. Gibbins, C. N., D. Vericat & R. J. R. Batalla, 2007. When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshwater Biology 52: 2369–2384.CrossRefGoogle Scholar
  26. Gibbins, C. N., D. Vericat, R. J. Batalla & C. Buendia, 2016. Which variables should be used to link invertebrate drift to river hydraulic conditions? Fundamental and Applied Limnology/Archiv für Hydrobiologie 187: 191–205.CrossRefGoogle Scholar
  27. Giller, P. S. & B. Malmqvist, 1998. The Biology of Streams and Rivers. Oxford University Press, Oxford.Google Scholar
  28. Hammock, B. G. & W. C. Wetzel, 2013. The relative importance of drift causes for stream insect herbivores across a canopy gradient. Oikos 122: 1586–1593.CrossRefGoogle Scholar
  29. Hayes, J. W., N. F. Hughes & L. H. Kelly, 2007. Process-based modelling of invertebrate drift transport, net energy intake and reach carrying capacity for drift-feeding salmonids. Ecological Modelling 207: 171–188.CrossRefGoogle Scholar
  30. Hayes, J. W., E. Goodwin, K. A. Shearer, J. Hay & L. Kelly, 2016. Can weighted useable area predict flow requirements of drift-feeding salmonids? Comparison with a net rate of energy intake model incorporating drift–flow processes. Transactions of the American Fisheries Society 145: 589–609.CrossRefGoogle Scholar
  31. Hayes, J. W., E. O. Goodwin, J. E. Clapcott & K. A. Shearer, 2018. The influence of natural flow and temperature and introduced brown trout on the temporal variation in native fish abundance in a ‘reference’ stream. Canadian Journal of Fisheries and Aquatic Sciences.Google Scholar
  32. Holomuzki, J. R. & B. J. F. Biggs, 2003. Sediment texture mediates high-flow effects on lotic macroinvertebrates. Journal of the North American Benthological Society 22: 542–553.CrossRefGoogle Scholar
  33. Imbert, B. J. & J. A. Perry, 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia 436: 191–208.CrossRefGoogle Scholar
  34. Kennedy, T. A., C. B. Yackulic, W. F. Cross, P. E. Grams, M. D. Yard & A. J. Copp, 2014. The relation between invertebrate drift and two primary controls, discharge and benthic densities, in a large regulated river. Freshwater Biology 59: 557–572.CrossRefGoogle Scholar
  35. Kohler, S. L., 1983. Positioning on substrates, positioning changes, and diel drift periodicities in mayflies. Canadian Journal of Zoology 61: 1362–1368.CrossRefGoogle Scholar
  36. Kohler, S. L., 1985. Identification of stream drift mechanisms: an experimental and observational approach. Ecology 66: 1749–1761.CrossRefGoogle Scholar
  37. Lacoursière, J. O., 1992. A laboratory study of fluid flow and microhabitat selection by larvae of Simulium vittatum (Diptera: Simuliidae). Canadian Journal of Zoology 70: 582–596.CrossRefGoogle Scholar
  38. Lancaster, J., 1999. Small-scale movements of lotic macroinvertebrates with variations in flow. Freshwater Biology 41: 605–619.CrossRefGoogle Scholar
  39. Lancaster, J., 2000. Geometric scaling of microhabitat patches and their efficacy as refugia during disturbance. Journal of Animal Ecology 69: 442–457.CrossRefGoogle Scholar
  40. Lancaster, J., B. J. Downes & A. Arnold, 2011. Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. Journal of Animal Ecology 80: 1061–1069.CrossRefGoogle Scholar
  41. Long, A., W. Ashe, K. Ravana & K. S. Simon, 2011. The effects of water velocity and sediment size on Acroneuria abnormis (Plecoptera: Perlidae) entrainment. Aquatic Insects 33: 105–112.CrossRefGoogle Scholar
  42. Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.CrossRefGoogle Scholar
  43. Müller, K., 1954. Investigations on the organic drift in North Swedish streams. Report of the Institute of Freshwater Research, Drottningholm 35: 133–148.Google Scholar
  44. Naman, S. M., J. S. Rosenfeld, J. S. Richardson & J. L. Way, 2017. Species traits and channel architecture mediate flow disturbance impacts on invertebrate drift. Freshwater Biology 62: 340–355.CrossRefGoogle Scholar
  45. Oldmeadow, D. F., J. Lancaster & S. P. Rice, 2010. Drift and settlement of stream insects in a complex hydraulic environment. Freshwater Biology 55: 1020–1035.CrossRefGoogle Scholar
  46. Phillipson, J., 1957. The effect of current speed on the distribution of the larvae of the blackflies, Simulium variegatum (Mg.) and Simulium monticola Fried (Diptera). Bulletin of Entomological Research 48: 811–819.CrossRefGoogle Scholar
  47. Poff, N. L. & J. V. Ward, 1991. Drift response of benthic invertebrates to experimental streamflow variation in a hydrologically stable stream. Canadian Journal of Fisheries and Aquatic Sciences 48: 1926–1936.CrossRefGoogle Scholar
  48. Pringle, S., 1982. Factors affecting the microdistribution of different sizes of the amphipod Gammarus pulex. Oikos 38: 369–373.CrossRefGoogle Scholar
  49. Quinn, J., C. Hickey & W. Linklater, 1996. Hydraulic influences on periphyton and benthic macroinvertebrates: simulating the effects of upstream bed roughness. Freshwater Biology 35: 301–309.CrossRefGoogle Scholar
  50. Rees, C. P., 1972. The distribution of the amphipod Gammarus pseudolimnaeus Bousfield as influenced by oxygen concentration, substratum, and current velocity. Transactions of the American Microscopical Society 91: 514–529.CrossRefGoogle Scholar
  51. Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology 45: 57–73.CrossRefGoogle Scholar
  52. Richardi, V. S., D. Rebechi, J. M. R. Aranha & M. A. Navarro-Silva, 2013. Determination of larval instars in Chironomus sancticaroli (Diptera: Chironomidae) using novel head capsule structures. Zoologia 30: 211–216.CrossRefGoogle Scholar
  53. Robinson, C. T., U. Uehlinger & M. T. Monaghan, 2004. Stream ecosystem response to multiple experimental floods from a reservoir. River Research and Applications 20: 359–377.CrossRefGoogle Scholar
  54. Romaniszyn, E. D., J. J. Hutchens & J. Bruce Wallace, 2007. Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout food resources. Freshwater Biology 52: 1–11.CrossRefGoogle Scholar
  55. Sagnes, P., S. Merigoux & N. Peru, 2008. Hydraulic habitat use with respect to body size of aquatic insect larvae: Case of six species from a French Mediterranean type stream. Limnologica-Ecology and Management of Inland Waters 38: 23–33.CrossRefGoogle Scholar
  56. Sánchez-Hernández, J., R. Vieira-Lanero, M. J. M. J. Servia & F. Cobo, 2011. First feeding diet of young brown trout fry in a temperate area: disentangling constraints and food selection. Hydrobiologia 663: 109–119.CrossRefGoogle Scholar
  57. Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.CrossRefGoogle Scholar
  58. Spiegelhalter, D. J., N. G. Best, B. P. Carlin & A. Linde, 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 583–639.CrossRefGoogle Scholar
  59. Stewart, K. W. & S. W. Szczytko, 1983. Drift of Ephemeroptera and Plecoptera in two Colorado rivers. Freshwater Invertebrate Biology 2: 117–131.CrossRefGoogle Scholar
  60. Stoneburner, D. L. & L. A. Smock, 1979. Seasonal fluctuations of macroinvertebrate drift in a south carolina piedmont stream. Hydrobiologia 63: 49–56.CrossRefGoogle Scholar
  61. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douce: systématique, biologie, écologie, Vol. 15. CNRS editions, Paris.Google Scholar
  62. Theodoropoulos, C., A. Vourka, A. Stamou, P. Rutschmann & N. Skoulikidis, 2017. Response of freshwater macroinvertebrates to rainfall-induced high flows: a hydroecological approach. Ecological Indicators 73: 432–442.CrossRefGoogle Scholar
  63. Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997a. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society 16: 531–544.CrossRefGoogle Scholar
  64. Townsend, C. R., S. Dolédec & M. R. Scarsbrook, 1997b. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37: 367–387.CrossRefGoogle Scholar
  65. Vericat, D., R. Batalla & C. N. Gibbins, 2008. Sediment entrainment and depletion from patches of fine material in a gravel-bed river. Water Resources Research 44: 1–15.CrossRefGoogle Scholar
  66. Waters, T. F., 1965. Interpretation of invertebrate drift in streams. Ecology 46: 327–334.CrossRefGoogle Scholar
  67. Weissenberger, J., H. C. Spatz, A. Emanns & J. Schwoerbel, 1991. Measurement of lift and drag forces in the range experienced by benthic arthropods at flow velocities below 1.2 ms−1. Freshwater Biology 25: 21–31.CrossRefGoogle Scholar
  68. Whiting, P. J. & W. E. Dietrich, 1990. Boundary shear stress and roughness over mobile alluvial beds. Journal of Hydraulic Engineering 116: 1495–1511.CrossRefGoogle Scholar
  69. Williams, D. D. & K. A. Moore, 1986. Microhabitat selection by a stream dwelling amphipod: a multivariate analysis approach. Freshwater Biology 16: 115–122.CrossRefGoogle Scholar
  70. Wilzbach, M. A., K. W. Cummins & R. A. Knapp, 1988. Toward a functional classification of stream invertebrate drift. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 23: 1244–1254.Google Scholar
  71. Wotton, R. S., 1979. The influence of a lake on the distribution of blackfly species (Diptera: Simuliidae) along a river. Oikos 32: 368–372.CrossRefGoogle Scholar
  72. Wotton, R. S., 1985. The reaction of larvae of Simulium noelleri (Diptera) to different current velocities. Hydrobiologia 123: 215–218.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ECOBIOP, UMR 1224, INRAUniv Pau & Pays AdourSaint-Pée-sur-NivelleFrance
  2. 2.Lab of Stream Ecology, Dept. of Plant Biology and EcologyUniv. Basque Country, UPV/EHUBilbaoSpain
  3. 3.Environmental Resources EngineeringHumboldt State UniversityArcataUSA

Personalised recommendations