Skip to main content
Log in

Comparison of the propensity to drift for three invertebrate taxa: a laboratory study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Invertebrate drift is an important ecological process but factors affecting the downstream transport of invertebrates are difficult to assess. The influence of water velocity on drift entry rates is still unclear and has rarely been quantified. In this study, conducted in spring and autumn, we investigated the drift propensity for different sizes of Baetis, Simulium and Chironomus larvae which, over a 24-h period, were subjected to low, moderate or high water velocities (14, 30 and 40 cm s−1, respectively) in either fine or coarse gravel beds. Interspecific differences were detected: Baetis drifted the most, Chironomus showed intermediate values and Simulium drifted the least. Chironomus was the only taxon that responded to water velocity. Baetis and Simulium were only slightly constrained to drift by the experimental conditions, while, in contrast, Chironomus larvae were very sensitive to flow increase. Substrate size (fine/coarse gravel bed) had no effect on any taxa. Small Simulium and Chironomus drifted more than larger ones. A seasonal effect was also detected, with Baetis drifting more in fall and Simulium drifting more in spring. Results suggest that community structure may be as or more important than hydraulics as a determinant of drift rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abràmoff, M. D., P. J. Magalhães & S. J. Ram, 2004. Image processing with imageJ. Biophotonics International 11: 36–41.

    Google Scholar 

  • Allan, J. D., 1984. The size composition of invertebrate drift in a rocky mountain stream. Oikos 43: 68–76.

    Article  Google Scholar 

  • Anderson, N. H. & D. M. Lehmkuhl, 1968. Catastrophic drift of insects in a woodland stream. Ecology 49: 198–206.

    Article  Google Scholar 

  • Bass, D., 1986. Habitat ecology of chironomid larvae of the Big Thicket streams. Hydrobiologia 134: 29–41.

    Article  Google Scholar 

  • Berg, M. B., 1995. Larval Food and Feeding Behaviour the Chironomidae: Biology and Ecology of Non-biting Midges. Springer, Netherlands: 136–168.

    Google Scholar 

  • Bowles, D. E. & R. A. Short, 1988. Size composition of invertebrate drift and fish predation in a Texas stream. Southwestern Naturalist 33: 177–184.

    Article  Google Scholar 

  • Brannin, M. T., M. K. O’Donnell & J. Fingerut, 2014. Effects of larval size and hydrodynamics on the growth rates of the black fly Simulium tribulatum. Integrative zoology 9: 61–69.

    Article  Google Scholar 

  • Brittain, J. & T. Eikeland, 1988. Invertebrate drift—a review. Hydrobiologia 166: 77–93.

    Article  Google Scholar 

  • Charpentier, B. & A. Morin, 1994. Effect of current velocity on ingestion rates of black fly larvae. Canadian Journal of Fisheries and Aquatic Sciences 51: 1615–1619.

    Article  Google Scholar 

  • Ciborowski, J. J. & D. A. Craig, 1989. Factors influencing dispersion of larval black flies (Diptera: Simuliidae): effects of current velocity and food concentration. Canadian Journal of Fisheries and Aquatic Sciences 46: 1329–1341.

    Article  Google Scholar 

  • Cure, V., 1985. Chironomidae (Diptera-Nematocera) aus Rumänien unter besonderer Berücksichtigung jener aus dem hydrographischen Einzugsgebiet der Donau. Veröffentlichungen der Arbeitsgemeinschaft Donauforschung: 163–217.

  • De Block, M., M. McPeek & R. Stoks, 2007. Winter compensatory growth under field conditions partly offsets low energy reserves before winter in a damselfly. Oikos 116: 1975–1982.

    Article  Google Scholar 

  • Duan, X. H., Z. Y. Wang, M. Z. Xu & K. Zhang, 2009. Effect of streambed sediment on benthic ecology. International Journal of Sediment Research 24: 325–338.

    Article  Google Scholar 

  • Elliott, J. M., 1967. The food of trout (Salmo trutta) in a Dartmoor stream. Journal of Applied Ecology 4: 59–71.

    Article  Google Scholar 

  • Elliott, J. M., 1970. Diel changes in invertebrate drift and the food of trout Salmo trutta L. Journal of Fish Biology 2: 161–165.

    Article  Google Scholar 

  • Fenoglio, S., F. Boano, T. Bo, R. Revelli & L. Ridolfi, 2013. The impacts of increasing current velocity on the drift of Simulium monticola (Diptera: Simuliidae): a laboratory approach. Italian Journal of Zoology 80: 443–448.

    Article  Google Scholar 

  • Finelli, C. M., D. D. Hart & R. A. Merz, 2002. Stream insects as passive suspension feeders: effects of velocity and food concentration on feeding performance. Oecologia 131: 145–153.

    Article  Google Scholar 

  • Fingerut, J. T., D. M. Fonseca, J. R. Thomson & D. D. Hart, 2015. Seeking shelter from the storm: responses of benthic stream invertebrates to natural and experimental floods. Freshwater Science 34: 897–908.

    Article  Google Scholar 

  • Fjellheim, A., 1996. Distribution of benthic invertebrates in relation to stream flow characteristics in a Norwegian river. Regulated Rivers-Research & Management 12: 263–271.

    Article  Google Scholar 

  • Fonseca, D. M. & D. D. Hart, 1996. Density-dependent dispersal of black fly neonates is mediated by flow. Oikos 75: 49–58.

    Article  Google Scholar 

  • Fonseca, D. M. & D. D. Hart, 2001. Colonization history masks habitat preferences in local distributions of stream insects. Ecology 82: 2897–2910.

    Article  Google Scholar 

  • Gee, J. H., 1982. Resource utilization by Gammarus pulex (Amphipoda) in a Cotswold stream: a microdistribution study. The Journal of Animal Ecology 51: 817–831.

    Article  Google Scholar 

  • Gelman, A. & J. Hill, 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Policy Analysis.

    Book  Google Scholar 

  • Gibbins, C. N., E. Scott, C. Soulsby & I. McEwan, 2005. The relationship between sediment mobilisation and the entry of Baetis mayflies into the water column in a laboratory flume. Hydrobiologia 533: 115–122.

    Article  Google Scholar 

  • Gibbins, C. N., D. Vericat & R. J. R. Batalla, 2007. When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshwater Biology 52: 2369–2384.

    Article  Google Scholar 

  • Gibbins, C. N., D. Vericat, R. J. Batalla & C. Buendia, 2016. Which variables should be used to link invertebrate drift to river hydraulic conditions? Fundamental and Applied Limnology/Archiv für Hydrobiologie 187: 191–205.

    Article  Google Scholar 

  • Giller, P. S. & B. Malmqvist, 1998. The Biology of Streams and Rivers. Oxford University Press, Oxford.

    Google Scholar 

  • Hammock, B. G. & W. C. Wetzel, 2013. The relative importance of drift causes for stream insect herbivores across a canopy gradient. Oikos 122: 1586–1593.

    Article  Google Scholar 

  • Hayes, J. W., N. F. Hughes & L. H. Kelly, 2007. Process-based modelling of invertebrate drift transport, net energy intake and reach carrying capacity for drift-feeding salmonids. Ecological Modelling 207: 171–188.

    Article  Google Scholar 

  • Hayes, J. W., E. Goodwin, K. A. Shearer, J. Hay & L. Kelly, 2016. Can weighted useable area predict flow requirements of drift-feeding salmonids? Comparison with a net rate of energy intake model incorporating drift–flow processes. Transactions of the American Fisheries Society 145: 589–609.

    Article  Google Scholar 

  • Hayes, J. W., E. O. Goodwin, J. E. Clapcott & K. A. Shearer, 2018. The influence of natural flow and temperature and introduced brown trout on the temporal variation in native fish abundance in a ‘reference’ stream. Canadian Journal of Fisheries and Aquatic Sciences.

  • Holomuzki, J. R. & B. J. F. Biggs, 2003. Sediment texture mediates high-flow effects on lotic macroinvertebrates. Journal of the North American Benthological Society 22: 542–553.

    Article  Google Scholar 

  • Imbert, B. J. & J. A. Perry, 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia 436: 191–208.

    Article  Google Scholar 

  • Kennedy, T. A., C. B. Yackulic, W. F. Cross, P. E. Grams, M. D. Yard & A. J. Copp, 2014. The relation between invertebrate drift and two primary controls, discharge and benthic densities, in a large regulated river. Freshwater Biology 59: 557–572.

    Article  Google Scholar 

  • Kohler, S. L., 1983. Positioning on substrates, positioning changes, and diel drift periodicities in mayflies. Canadian Journal of Zoology 61: 1362–1368.

    Article  Google Scholar 

  • Kohler, S. L., 1985. Identification of stream drift mechanisms: an experimental and observational approach. Ecology 66: 1749–1761.

    Article  Google Scholar 

  • Lacoursière, J. O., 1992. A laboratory study of fluid flow and microhabitat selection by larvae of Simulium vittatum (Diptera: Simuliidae). Canadian Journal of Zoology 70: 582–596.

    Article  Google Scholar 

  • Lancaster, J., 1999. Small-scale movements of lotic macroinvertebrates with variations in flow. Freshwater Biology 41: 605–619.

    Article  Google Scholar 

  • Lancaster, J., 2000. Geometric scaling of microhabitat patches and their efficacy as refugia during disturbance. Journal of Animal Ecology 69: 442–457.

    Article  Google Scholar 

  • Lancaster, J., B. J. Downes & A. Arnold, 2011. Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. Journal of Animal Ecology 80: 1061–1069.

    Article  Google Scholar 

  • Long, A., W. Ashe, K. Ravana & K. S. Simon, 2011. The effects of water velocity and sediment size on Acroneuria abnormis (Plecoptera: Perlidae) entrainment. Aquatic Insects 33: 105–112.

    Article  Google Scholar 

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.

    Article  Google Scholar 

  • Müller, K., 1954. Investigations on the organic drift in North Swedish streams. Report of the Institute of Freshwater Research, Drottningholm 35: 133–148.

    Google Scholar 

  • Naman, S. M., J. S. Rosenfeld, J. S. Richardson & J. L. Way, 2017. Species traits and channel architecture mediate flow disturbance impacts on invertebrate drift. Freshwater Biology 62: 340–355.

    Article  Google Scholar 

  • Oldmeadow, D. F., J. Lancaster & S. P. Rice, 2010. Drift and settlement of stream insects in a complex hydraulic environment. Freshwater Biology 55: 1020–1035.

    Article  Google Scholar 

  • Phillipson, J., 1957. The effect of current speed on the distribution of the larvae of the blackflies, Simulium variegatum (Mg.) and Simulium monticola Fried (Diptera). Bulletin of Entomological Research 48: 811–819.

    Article  Google Scholar 

  • Poff, N. L. & J. V. Ward, 1991. Drift response of benthic invertebrates to experimental streamflow variation in a hydrologically stable stream. Canadian Journal of Fisheries and Aquatic Sciences 48: 1926–1936.

    Article  Google Scholar 

  • Pringle, S., 1982. Factors affecting the microdistribution of different sizes of the amphipod Gammarus pulex. Oikos 38: 369–373.

    Article  Google Scholar 

  • Quinn, J., C. Hickey & W. Linklater, 1996. Hydraulic influences on periphyton and benthic macroinvertebrates: simulating the effects of upstream bed roughness. Freshwater Biology 35: 301–309.

    Article  Google Scholar 

  • Rees, C. P., 1972. The distribution of the amphipod Gammarus pseudolimnaeus Bousfield as influenced by oxygen concentration, substratum, and current velocity. Transactions of the American Microscopical Society 91: 514–529.

    Article  Google Scholar 

  • Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology 45: 57–73.

    Article  Google Scholar 

  • Richardi, V. S., D. Rebechi, J. M. R. Aranha & M. A. Navarro-Silva, 2013. Determination of larval instars in Chironomus sancticaroli (Diptera: Chironomidae) using novel head capsule structures. Zoologia 30: 211–216.

    Article  Google Scholar 

  • Robinson, C. T., U. Uehlinger & M. T. Monaghan, 2004. Stream ecosystem response to multiple experimental floods from a reservoir. River Research and Applications 20: 359–377.

    Article  Google Scholar 

  • Romaniszyn, E. D., J. J. Hutchens & J. Bruce Wallace, 2007. Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout food resources. Freshwater Biology 52: 1–11.

    Article  Google Scholar 

  • Sagnes, P., S. Merigoux & N. Peru, 2008. Hydraulic habitat use with respect to body size of aquatic insect larvae: Case of six species from a French Mediterranean type stream. Limnologica-Ecology and Management of Inland Waters 38: 23–33.

    Article  Google Scholar 

  • Sánchez-Hernández, J., R. Vieira-Lanero, M. J. M. J. Servia & F. Cobo, 2011. First feeding diet of young brown trout fry in a temperate area: disentangling constraints and food selection. Hydrobiologia 663: 109–119.

    Article  Google Scholar 

  • Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.

    Article  Google Scholar 

  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin & A. Linde, 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 583–639.

    Article  Google Scholar 

  • Stewart, K. W. & S. W. Szczytko, 1983. Drift of Ephemeroptera and Plecoptera in two Colorado rivers. Freshwater Invertebrate Biology 2: 117–131.

    Article  Google Scholar 

  • Stoneburner, D. L. & L. A. Smock, 1979. Seasonal fluctuations of macroinvertebrate drift in a south carolina piedmont stream. Hydrobiologia 63: 49–56.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douce: systématique, biologie, écologie, Vol. 15. CNRS editions, Paris.

    Google Scholar 

  • Theodoropoulos, C., A. Vourka, A. Stamou, P. Rutschmann & N. Skoulikidis, 2017. Response of freshwater macroinvertebrates to rainfall-induced high flows: a hydroecological approach. Ecological Indicators 73: 432–442.

    Article  Google Scholar 

  • Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997a. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society 16: 531–544.

    Article  Google Scholar 

  • Townsend, C. R., S. Dolédec & M. R. Scarsbrook, 1997b. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37: 367–387.

    Article  Google Scholar 

  • Vericat, D., R. Batalla & C. N. Gibbins, 2008. Sediment entrainment and depletion from patches of fine material in a gravel-bed river. Water Resources Research 44: 1–15.

    Article  Google Scholar 

  • Waters, T. F., 1965. Interpretation of invertebrate drift in streams. Ecology 46: 327–334.

    Article  Google Scholar 

  • Weissenberger, J., H. C. Spatz, A. Emanns & J. Schwoerbel, 1991. Measurement of lift and drag forces in the range experienced by benthic arthropods at flow velocities below 1.2 ms−1. Freshwater Biology 25: 21–31.

    Article  Google Scholar 

  • Whiting, P. J. & W. E. Dietrich, 1990. Boundary shear stress and roughness over mobile alluvial beds. Journal of Hydraulic Engineering 116: 1495–1511.

    Article  Google Scholar 

  • Williams, D. D. & K. A. Moore, 1986. Microhabitat selection by a stream dwelling amphipod: a multivariate analysis approach. Freshwater Biology 16: 115–122.

    Article  Google Scholar 

  • Wilzbach, M. A., K. W. Cummins & R. A. Knapp, 1988. Toward a functional classification of stream invertebrate drift. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 23: 1244–1254.

    Google Scholar 

  • Wotton, R. S., 1979. The influence of a lake on the distribution of blackfly species (Diptera: Simuliidae) along a river. Oikos 32: 368–372.

    Article  Google Scholar 

  • Wotton, R. S., 1985. The reaction of larvae of Simulium noelleri (Diptera) to different current velocities. Hydrobiologia 123: 215–218.

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely thankful to the referees for their constructive comments. The authors declare no conflicts of interest. E. Arevalo benefits from a cross-border grant (Univ Pau & Pays Adour/UPV) and from Mérimée, a programme funded by the French Embassy. Experiments were carried out thanks to the IE ECP facilities and financially supported by CG64 and INRA Ecoserv Metaprogram. We wish to thank F. Gueraud, P. Coste, E. Huchet and J. Rives for their help with the experimental set-up and invertebrate sampling, J. Labonne for his comments on the manuscript and J. Almany for correcting the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elorri Arevalo.

Additional information

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arevalo, E., Larrañaga, A., Lang, M. et al. Comparison of the propensity to drift for three invertebrate taxa: a laboratory study. Hydrobiologia 830, 243–254 (2019). https://doi.org/10.1007/s10750-018-3870-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3870-y

Keywords

Navigation