Skip to main content
Log in

Sub-basin and temporal variability of macroinvertebrate assemblages in Alpine streams: when and where to sample?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The seasonal dynamics and spatial variability of macroinvertebrate assemblages in Alpine streams are becoming better understood. However, the implications of this knowledge for indices used in monitoring programs have yet to be fully considered. Establishing the ecological status of such streams using macroinvertebrates may then be difficult if what is expected to be found, and where, varies across small distances between streams at a given altitude, or between years in response to different climatic characteristics. In this paper, we evaluated the degree of spatial variability in macroinvertebrate abundance and diversity for 14 tributaries at similar altitude that feed a 6-km reach of an Alpine stream, and how this spatial variability differs within and between years. Environmental variables and macroinvertebrates were sampled on 10 dates for assessment. The data showed that differences in environmental characteristics over relatively short distances lead to between tributary differences in the “windows of opportunity” and hence when a tributary should be sampled for monitoring purposes. Superimposed on this spatial variability was inter-annual variability linked to climate differences that shifted this “window of opportunity” in time, and thus altered when monitoring was optimal for any one tributary in any one year. If biological indices are not rendered sensitivity to these variations, the results obtained may reflect more natural variability than possible human impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adriaenssens, V., P. F. M. Verdonschot, P. L. M. Goethals & N. De Pauw, 2007. Application of clustering techniques for the characterization of macroinvertebrate communities to support river restoration management. Aquatic Ecology 41: 387–398.

    Google Scholar 

  • Agence de l’eau, 2000. Indice biologique global normalise I.B.G.N., NF-T90-350; Guide technique (2ème edition). AFNOR, Paris.

  • AQEM Consortium, 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0, February 2002. AQEM Consortium, Deutschland.

  • Armitage, P. D., I. Pardo & A. Brown, 1995. Temporal constancy of faunal assemblages in mesohabitats. Application to management. Archiv für Hydrobiologie 133: 367–387.

    Google Scholar 

  • Arnold, N., 2005. Investigation the sensitivity of glacier mass-balance/elevation profiles to changing meteorological conditions: model experiments for Haut Glacier d’Arolla, Valais, Switzerland. Arctic, Antarctic and Alpine Research 37: 139–145.

    Google Scholar 

  • Aroviita, J., H. Mykräc & H. Hämäläinena, 2010. River bioassessment and the preservation of threatened species: towards acceptable biological quality criteria. Ecological Indicators 10: 789–795.

    Google Scholar 

  • Bailly, P. & C. Carrère, 2015. Statistiques Descriptives: L’économie et les chiffres. Presses universitaires, Grenoble.

    Google Scholar 

  • Bizzotto, E. C., S. Villa & M. Vighi, 2009. POP bioaccumulation in macroinvertebrates of Alpine freshwater systems. Environmental Pollution 157: 3192–3198.

    CAS  PubMed  Google Scholar 

  • Bo, T., A. Doretto, A. Laini, F. Bona & S. Fenoglio, 2017. Biomonitoring with macroinvertebrate communities in Italy: what happened to our past and what is the future? Journal of Limnology 76(s1): 21–28.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Google Scholar 

  • Breinlinger, R., P. Gamma & R. Weingartner, 1992. Characteristics of small basins. Hydrological Atlas of Switzerland, Plate 1.2. Swiss National Hydrological and Geological Survey, Bern.

  • Brown, L. E., D. M. Hannah & A. M. Milner, 2003. Alpine stream habitat classification: an alternative approach incorporating the role of dynamic water source contributions. Arctic, Antarctic, and Alpine Research 35: 313–322.

    Google Scholar 

  • Brown, L. E., A. M. Milner & D. M. Hannah, 2006. Stability and persistence of Alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia 560: 159–173.

    CAS  Google Scholar 

  • Brown, L. E., D. M. Hannah & A. M. Milner, 2007. Vulnerability of Alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biology 13: 958–966.

    Google Scholar 

  • Brown, L. E., D. M. Hannah & A. M. Milner, 2009. ARISE: a classification tool for Alpine River and Stream Ecosystems. Freshwater Biology 54: 1357–1369.

    Google Scholar 

  • Brown, L. E., N. E. Dickson, J. L. Carrivick & L. Füreder, 2015. Alpine river ecosystem response to glacial and anthropogenic flow pulses. Freshwater Science 34: 1201–1215.

    Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    PubMed  Google Scholar 

  • Burgazzi, G., A. Laini, E. Racchetti & P. Viaroli, 2017. Mesohabitat mosaic in lowland braided rivers: Short-term variability of macroinvertebrate metacommunities. Journal of Limnology 76: s1.

    Google Scholar 

  • Burgherr, P. & J. V. Ward, 2001. Longitudinal and seasonal distribution patterns of the benthic fauna of an Alpine glacial stream (Val Roseg, Swiss Alps). Freshwater Biology 46: 1705–1721.

    CAS  Google Scholar 

  • Callanan, M., J.-R. Baars & M. Kelly-Quinn, 2008. Critical influence of season sampling on the ecological quality assessment of small headwater streams. Hydrobiologia 610: 245–255.

    CAS  Google Scholar 

  • Charvet, S., A. Kosmala & B. Statzner, 1998. Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Archiv für Hydrobiologie 142: 415–432.

    Google Scholar 

  • Clarke, R. T., M. T. Furse, R. J. M. Gunn, J. M. Winder & J. F. Wright, 2002. Sampling variation in macroinvertebrate data and implications for river quality indices. Freshwater Biology 47: 1735–1751.

    Google Scholar 

  • Clarke, R. T., J. F. Wright & M. T. Furse, 2003. RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160: 219–233.

    Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    PubMed  Google Scholar 

  • Digby, P. G. N. & R. A. Kempton, 1987. Population and Community Biology Series: Multivariate Analysis of Ecological Communities. Chapman and Hall, London.

    Google Scholar 

  • Dray, S., A.-B. Dufour & J. Thioulouse, 2014. Multivariate Analysis of Ecological Data with ade4. University of Lausanne, Lausanne.

    Google Scholar 

  • Dohet, A., L. Ector, H.-M. Cauchie & L. Hoffmann, 2008. Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg. Animal Biology 58: 419–472.

    Google Scholar 

  • Eklöv, A. G., L. A. Greenberg, C. Brönmark, P. Larsson & O. Berglund, 1999. Influence of water quality, habitat and species richness on brown trout population. Journal of Fish Biology 54: 33–43.

    Google Scholar 

  • Feio, M. J. & J. M. Poquet, 2011. Predictive models for freshwater biological assessment: statistical approaches, biological elements and the iberian peninsula experience: a review. International Review of Hydrobiology 96: 321–346.

    Google Scholar 

  • Füreder, L., 1999. High Alpine streams: cold habitats for insect larvae. In Margesin, R. & F. Schinner (eds), Cold Adapted Organisms: Ecophysiology, Enzymology and Molecular Biology. Springer, Berlin.

    Google Scholar 

  • Füreder, L., C. Schütz, M. Wallinger & R. Burger, 2001. Physico-chemistry and aquatic insects of a glacier-fed and a spring-fed Alpine stream. Freshwater Biology 46: 1673–1690.

    Google Scholar 

  • Füreder, L., M. Wallinger & R. Burger, 2005. Longitudinal and seasonal pattern of insect emergence in Alpine streams. Aquatic Ecology 39: 67–78.

    Google Scholar 

  • Gabbud, C., C. T. Robinson & S. N. Lane, 2018. Summer is in winter: disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Science of the Total Environment 650: 2164–2180.

    PubMed  Google Scholar 

  • Ghetti, P. F. & G. Bonazzi, 1977. A comparison between various criteria for the interpretation of biological data in the analysis of the quality of running waters. Water Research 11: 819–831.

    CAS  Google Scholar 

  • Goodall, D. W., 1954. Objective methods for the classification of vegetation. III. An essay on the use of factor analysis. Australian Journal of Botany 1: 39–63.

    Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.

    Google Scholar 

  • Ilg, C. & E. Castella, 2006. Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwater Biology 51: 840–853.

    Google Scholar 

  • Keizer-Vlek, H. E., P. F. M. Verdonschot, R. C. M. Verdonschot & P. W. Goedhart, 2012. Quantifying spatial and temporal variability of macroinvertebrate metrics. Ecological Indicators 23: 384–393.

    Google Scholar 

  • Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart & D. P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46: 87–97.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 3rd ed. Elsevier Science BV, Amsterdam.

    Google Scholar 

  • Leitão, F., S. J. Hughes, I. Máximo, N. Atanasova, A. Furtado & L. Chicharo, 2014. Habitat-oriented sampling of macroinvertebrates affects the determination of ecological status in temporary Mediterranean river systems. River Research and Applications 30: 1233–1247.

    Google Scholar 

  • Lencioni, V., B. Maiolini, L. Marziali, S. Lek & B. Rossaro, 2007. Macroinvertebrate assemblages in glacial stream systems: a comparison of linear multivariate methods with artificial neural networks. Ecological Modelling 203: 119–131.

    Google Scholar 

  • Lods-Crozet, B., E. Castella, V. Cambin, C. Ilg, S. Knispel & H. Mayor-Simeant, 2001. Macroinvertebrate community structure in relation to environmental variables in a Swiss glacial stream. Freshwater Biology 2001: 1641–1661.

    Google Scholar 

  • Lorenz, A. & R. T. Clarke, 2006. Sample coherence: a field study approach to assess similarity of macroinvertebrate samples. Hydrobiologia 566: 461–476.

    Google Scholar 

  • Maiolini, B., M. Carolli & L. Silveri, 2011. Ephemeroptera, Plecoptera and Trichoptera in springs in Trentino (south-eastern Alps). Journal of Limnology 70: 122–133.

    Google Scholar 

  • Malard, F., K. Tockner & J. V. Ward, 1999. Shifting dominance of subcatchment water sources and flow paths on a glacial floodplain, Val Roseg, Switzerland. Arctic, Antarctic, and Alpine Research 31: 135–150.

    Google Scholar 

  • Malard, F., D. Galassi, M. Lafont, S. Dolédec & J. V. Ward, 2003. Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biology 48: 1709–1725.

    CAS  Google Scholar 

  • McDonald, J. R., 2014. Handbook of Biological Statistics, 3rd ed. Sparky House Publishing, Baltimore.

    Google Scholar 

  • Meteosuisse, 2014. Climate today: trends in Switzerland. Technical Report. Zürich: Federal Office of Meteorology and Climatology Meteoswiss. [Available on www.meteosuisse.admin.ch].

  • Meteosuisse, 2018. Portail de données pour l’enseignement et la recherche (IDAweb)-Evolène. Zürich: Federal Office of Meteorology and Climatology Meteoswiss [Available on www.meteosuisse.admin.ch].

  • Micheletti, N., C. Lambiel & S. N. Lane, 2015. Investing decadal-scale geomorphic dynamics in an Alpine mountain setting. Journal of Geophysical Research 120: 2155–2175.

    Google Scholar 

  • Milner, A. M. & G. E. Petts, 1994. Glacial rivers: physical habitat and ecology. Freshwater Biology 32: 295–307.

    Google Scholar 

  • Newson, M. D. & C. L. Newson, 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography 24: 195–217.

    Google Scholar 

  • OCDE Organisation de Coopération et de Développement économiques, 2002. Examens des performances environnementales—Italie. Service des publications de l’OCDE.

  • OFEV Office Fédéral de l’Environnement, 2010. Méthode d’analyse et d’appréciation des cours d’eau; Macrozoobenthos—niveau R (région). OFEV, Bern.

  • Peet, R. K., 1974. The measurement of species diversity. Annual Reviews of Ecology and Systematics 5: 285–307.

    Google Scholar 

  • Petts, G. E. & M. A. Bickerton, 1994. Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream system: La Borgne d’Arolla, Valais, Switzerland. Freshwater Biology 32: 375–386.

    Google Scholar 

  • Pielou, E. C., 1984. The Interpretation of Ecological Data: A Primer on Classification and Ordination. Wiley, New York.

    Google Scholar 

  • Pinto, P., J. Rosado, M. Morais & I. Antunes, 2004. Assessment of methodology for southern siliceous basins in Portugal. Hydrobiologia 516: 191–214.

    CAS  Google Scholar 

  • Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.

    Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The Natural Flow Regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.

    Google Scholar 

  • Pottgiesser, T. & M. Sommerhauser, 2004. Die Fliessgewässertypologie Deutschlands: System der Gewässertypen und Steckbriefe zu den Referenzbedingungen. In Steinberg C., W. Calmano, R.-D. Wilken & H. Klapper (eds), Handbuch Angewandte Limnologie. 19. Erg.Lfg. 7/04. VIII-2.1:1–16 + Anhang. ecomed Verlagsgesellschaff Landsberg.

  • R Development Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org.

  • Raven, P. J., N. T. H. Holmes, P. Charrier, F. H. Dawson, M. Naura & P. J. Boon, 2002. Towards a harmonized approach for hydromorphological assessment of rivers in Europe: a qualitative comparison of three survey methods. Aquatic Conservation 12: 405–424.

    Google Scholar 

  • Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16: 833–852.

    Google Scholar 

  • Richards, K. S., 1982. Rivers: Form and Process in Alluvial Channels. Arnold, London.

    Google Scholar 

  • Rico, E., A. Rallo, M. A. Sevillano & M. L. Arretxe, 1992. Comparison of several biological indices based on river macroinvertebrate benthic community for assessment of running water quality. International Journal of Limnology 28: 147–156.

    Google Scholar 

  • Robinson, C. T., U. Uehlinger & M. Hieber, 2001. Spatio-temporal variation in macroinvertebrate assemblages of glacial streams in the Swiss Alps. Freshwater Biology 46: 1663–1672.

    CAS  Google Scholar 

  • Robinson, C. T., D. Tonolla, B. Imhof, R. Vukelic & U. Uehlinger, 2015. Flow intermittency, physico-chemistry and function of headwater streams in an Alpine glacial catchment. Aquatic Sciences 78: 327–341.

    Google Scholar 

  • Rott, E., M. Cantonati, L. Füreder & P. Pfister, 2006. Benthic algae in high altitude streams of the Alps: a neglected component of the aquatic biota. Hydrobiologia 562: 195–216.

    Google Scholar 

  • Saltveit, S. J., I. Haug & J. E. Brittain, 2001. Invertebrate drift in a glacial river and its non-glacial tributary. Freshwater Biology 46: 1777–1789.

    Google Scholar 

  • Sánchez-Montoya, M. M., M. L. Suárez & M. R. Vidal-Abarca, 2009. Seasonal and interannual variability of macroinvertebrate reference communities and its influence on bioassessment in different Mediterranean stream types. Hydrobiologia 174: 353–367.

    Google Scholar 

  • Sandin, L. & D. Hering, 2004. Comparing macroinvertebrate indices to detect organic pollution across Europe: a contribution to the EC Water Framework Directive intercalibration. Hydrobiologia 516: 55–68.

    CAS  Google Scholar 

  • Sandin, L. & R. L. Johnson, 2000. The statistical power of selected indicator metrics using macroinvertebrates for assessing acidification and eutrophication of running waters. Hydrobiologia 422: 223–243.

    Google Scholar 

  • Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Schmedtje, U., M. Sommerhäuser, U. Braukmann, E. Briem, R. Haase & D. Hering, 2000. “Top-down.” Konzept einer biozönotisch begründeten Fließgewässertypologie Deutschlands. In Deutsche Gesellschaft für Limnologie (Hrsg.): Tagungsbericht, 147–151.

  • Schütz, C., M. Wallinger, R. Burger & L. Füreder, 2001. Effects of snow cover on the benthic fauna in a glacier-fed stream. Freshwater Biology 46: 1691–1704.

    Google Scholar 

  • Sertic Peric, M., C. Jolidon, U. Uehlinger & C. T. Robinson, 2015. Long-term ecological patterns of Alpine streams: an imprint of glacial legacies. Limnology and Oceanography 60: 992–1007.

    CAS  Google Scholar 

  • Snook, D. L. & A. M. Milner, 2001. The influence of glacial runoff on stream macroinvertebrate communities in the Taillon catchment, French Pyrénées. Freshwater Biology 46: 1609–1623.

    Google Scholar 

  • Stampfli, G., 2015. EvolèneGeo—La géologie du Val d’Hérens; Excursion B : Arolla—Pra Gra —Lac Bleu—La Gouille. Evolène-Région Tourisme. [Available on http://www.evolene-geologie.ch/data/documents/Excursion-B.pdf].

  • Tachet, H., P. Richoux & M. Bournaud, 2010. Invertébrés d’eau Douce, Systématique, Biologie, Écologie. CNRS Editions.

  • Ter Braak, C. J. F., 1897. 5. Ordination. In Jongman R. H., C. J. F. Ter Braak & O. F. R. Van Tongeren, (eds), Data Analysis in Community Ecology. Pudoc, Wageningen.

  • Thioulouse, J., D. Chessel, S. Dole’dec & J. M. Olivier, 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 4: 75–83.

    Google Scholar 

  • Uehlinger, U., 1991. Spatial and temporal variability of the periphyton biomass in a preAlpine river (Necker, Switzerland). Archiv für Hydrobiologie 123: 219–237.

    Google Scholar 

  • Uehlinger, U., C. T. Robinson & M. Hieber, 2010. The physico-chemical habitat template for periphyton in Alpine glacial streams under a changing climate. Hydrobiologia 657: 107–121.

    CAS  Google Scholar 

  • Verneaux, J., 1982. Expression biologique, qualitative et pratique, de l’aptitude des cours d’eaux au développement de la faune benthique-Un coefficient d’aptitude biogène : le Cb2. Université, Travaux de Laboratoire d’Hydrobiologie, Besançon.

    Google Scholar 

  • Verneaux, J. & G. Tuffery, 1967. Une méthode zoologique pratique de détermination de la qualité biologique des eaux courantes. Indices biotiques. Annales scientifiques de l’Université de Besançon 3: 79–89.

    Google Scholar 

  • Ward, J. V., 1994. Ecology of Alpine streams. Freshwater Biology 32: 277–294.

    Google Scholar 

  • Ward, J. V., F. Malard, K. Tockner & U. Uehlinger, 1999. Influence of groundwater on surface water conditions in a glacial floodplain of the Swiss Alps. Hydrological Processes 13: 277–293.

    Google Scholar 

  • Wohl, E., S. N. Lane & A. C. Wilcox, 2015. The science and practice of river restoration. Water Resources Research 51: 5974–5997.

    Google Scholar 

  • Wright, J. F., 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20: 181–197.

    Google Scholar 

  • Wu, Y., 2017. Periphyton: Functions and Application in Environmental Remediation. Elsevier, Amsterdam.

    Google Scholar 

  • Zah, R. & U. Uehlinger, 2001. Particulate organic matter inputs to a glacial stream ecosystem in he Swiss Alps. Freshwater Biology 46: 1597–1608.

    CAS  Google Scholar 

  • Zah, R., P. Burgherr, S. M. Bernasconi & U. Uehlinger, 2001. Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream. Freshwater Biology 46: 871–882.

    CAS  Google Scholar 

  • Zbinden, M., M. Hieber, C. T. Robinson & U. Uehlinger, 2008. Short-term colonization patterns of macroinvertebrates in Alpine streams. Fundamental and Applied Limnology 171: 75–86.

    Google Scholar 

Download references

Acknowledgements

We thank the SNSF—Swiss National Science Foundation, the National Research Program—NRP70 titled “HydroEnv - Optimizing environmental flow releases under future hydropower operation” and the University of Lausanne, Switzerland for funding the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gabbud.

Additional information

Handling editor: Dani Boix

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabbud, C., Robinson, C.T. & Lane, S.N. Sub-basin and temporal variability of macroinvertebrate assemblages in Alpine streams: when and where to sample?. Hydrobiologia 830, 179–200 (2019). https://doi.org/10.1007/s10750-018-3862-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3862-y

Keywords

Navigation