Skip to main content

Advertisement

Log in

Plankton community interactions in an Amazonian floodplain lake, from bacteria to zooplankton

  • PHYTOPLANKTON & BIOTIC INTERACTIONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The simple view of the classical phytoplankton–zooplankton–fish food chain (CFC) has been replaced by a more complex framework, integrating microbial compartments (microbial food web, MFW). Few studies considered all components of the pelagic MFW in freshwaters and mostly are from temperate regions. We investigated carbon partitioning in the CFC and the MFW in an Amazonian floodplain system and analyzed the strength of interactions among components through structure equation modeling. We hypothesized that (i) MFW contributes highly to total plankton biomass throughout the year; and (ii) all plankton communities increase in biomass during low water, increasing the role of trophic interactions. We collected 30 subsurface samples (nutrients and plankton communities). MFW predominated over CFC in carbon biomass, and plankton components and their interactions changed according to the contrasting water level. Because phosphorus can be a potentially limiting resource for strict primary producers, higher biomass and a more complex MFW occurred during low water. We concluded that hydrology is a key factor shaping biotic interactions during low-water periods, and that MFW plays a key role in floodplain lakes, being potential mixotrophy an important strategy for phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, R. M., F. Roland, S. J. Cardoso, V. F. Farjalla, R. L. Bozelli & N. O. Barros, 2015a. Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River. Frontiers in Microbiology 6: 158.

    PubMed  PubMed Central  Google Scholar 

  • Almeida, R. M., L. Tranvik, V. L. M. Huszar, S. Sobek, R. Mendonça, N. Barros, G. Boemer Jr., J. D. Arantes & F. Roland, 2015b. Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming. Inland Waters 5: 275–282.

    Google Scholar 

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves & G. Sparovek, 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Google Scholar 

  • Amaral, J. H. F., A. V. Borges, J. M. Melack, H. Sarmento, P. M. Barbosa, D. Kasper, M. L. de Melo, D. De Fex-Wolf, J. S. da Silva & B. R. Forsberg, 2018. Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake. Science of the Total Environment 630: 1381–1393.

    CAS  PubMed  Google Scholar 

  • ANA – Agência Nacional de Águas, [available on internet at www.ana.gov.br/telemetria], station 15630000, Humaitá, Amazonas State.

  • Anésio, A. M., P. C. Abreu & F. A. Esteves, 1997. Influence of the hydrological cycle on the bacterioplankton of an impacted clear water Amazonian Lake. Microbial Ecology 34: 66–73.

    PubMed  Google Scholar 

  • Aoyagui, A. S. M. & C. C. Bonecker, 2004. Rotifers in different environments of the Upper Paraná River floodplain (Brazil): richness, abundance and the relationship with the connectivity. Hydrobiologia 522: 281–290.

    Google Scholar 

  • Atwood, T. B., E. Hammill, H. S. Greig, P. Kratina, J. B. Shurin, D. S. Srivastava & J. S. Richardson, 2013. Predator-induced reduction of freshwater carbon dioxide emissions. Nature Geoscience 6: 191–194.

    CAS  Google Scholar 

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.

    Google Scholar 

  • Aufdenkampe, A. K., E. Mayorga, P. A. Raymond, et al., 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and Environment 9: 53–60.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Google Scholar 

  • Barros, N., V. F. Farjalla, M. C. Soares, R. C. N. Melo & F. Roland, 2010. Virus-Bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian Floodplain Lake. Applied and Environmental Microbiology 76: 7194–7201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, D., M. Machler, B. M. Bolker & S. C. Walker, 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48.

    Google Scholar 

  • Berninger, U.-G., B. J. Finlay & P. Kuuppo-Leinikki, 1991. Protozoan control of bacterial abundances in freshwater. Limnology and Oceanography 36: 139–147.

    Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & S. W. Jada-Simone, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Google Scholar 

  • Bollen, K. A. & R. A. Stine, 1992. Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research 21: 205–229.

    Google Scholar 

  • Borsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series 36: 171–175.

    Google Scholar 

  • Bozelli, R. L., 1994. Zooplankton community density in relation to water fluctuation and inorganic turbidity in an Amazonian lake, Lago Batata, State of Pará, Brazil. Amazoniana 13: 17–32.

    Google Scholar 

  • Burns, C. W. & L. M. Galbraith, 2007. Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research 29: 127–139.

    CAS  Google Scholar 

  • Callieri, C. & J. Stockner, 2002. Freshwater autotrophic picoplankton: a review. Journal of Limnology 61: 1–14.

    Google Scholar 

  • Callieri, C., A. Pugnett & M. Manca, 1999. Carbon partitioning in the food web of a high mountain lake: from bacteria to zooplankton. Journal of Limnology 58: 144–151.

    Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Carvalho, P., S. M. Thomaz & L. M. Bini, 2003. Effects of water level, abiotic and biotic factors on bacterioplankton abundance in lagoons of a tropical floodplain (Paraná River, Brazil). Hydrobiologia 510: 67–74.

    CAS  Google Scholar 

  • Chase, E. M. & F. L. Sayles, 1980. Phosphorus in suspended sediments of the Amazon River. Estuarine and Coastal Marine Science 2: 383–391.

    Google Scholar 

  • Cole, G. A., 1994. Textbook of Limnology. Waveland Press Inc., Long Grove.

    Google Scholar 

  • Conty, A. & E. Becares, 2013. Unimodal patterns of microbial communities with eutrophication in Mediterranean shallow lakes. Hydrobiologia 700: 257–265.

    Google Scholar 

  • Cremona, F., T. Kõiv, V. Kisand, A. Laas, P. Zingel, H. Agasild, T. Feldmann, A. Järvalt, P. Nõges & T. Nõges, 2014. From bacteria to piscivorous fish: estimates of whole-lake and component-specific metabolism with an ecosystem approach. PLoS ONE 9: e101845.

    PubMed  PubMed Central  Google Scholar 

  • Crumpton, W. G., T. M. Isenhart & P. D. Mitchell, 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnology and Oceanography 37: 907–913.

    CAS  Google Scholar 

  • Domingues, C. D., L. H. S. Silva, L. M. Rangel, L. de Magalhães, R. A. Melo, L. M. Lobão, R. Paiva, F. Roland & H. Sarmento, 2016. Microbial food-web drivers in tropical reservoirs. Microbial Ecology 73: 505–520.

    PubMed  Google Scholar 

  • Drakare, S., P. Blomqvist, A. Bergstrom & M. Jansson, 2002. Primary production and phytoplankton in relation to DOC input and bacterioplankton production in humic Lake Örträsket. Freshwater Biology 47: 41–52.

    CAS  Google Scholar 

  • Doherty, M., P. L. Yager, M. A. Moran, V. J. Coles, C. S. Fortunato, A. V. Krusche & B. C. Crump, 2017. Bacterial biogeography across the Amazon River-Ocean Continuum. Frontiers in Microbiology 8: 882.

    PubMed  PubMed Central  Google Scholar 

  • Engle, D. L. & O. Sarnelle, 1990. Algal use of sedimentary phosphorus from an Amazon floodplain lake: implications for total phosphorus analysis in turbid waters. Limnology and Oceanography 35: 483–490.

    CAS  Google Scholar 

  • Esquivel, A., A. Barani, M. Macek, R. Soto-Casto & C. Bulit, 2016. The trophic role and impact of plankton ciliates in the microbial web structure of a tropical polymictic lake dominated by filamentous cyanobacteria. Journal of Limnology 75: 93–106.

    Google Scholar 

  • Fenchel, T., 2008. The microbial loop – 25 years later. Journal of Experimental Marine Biology and Ecology 366: 99–103.

    Google Scholar 

  • Fermani, P., N. Diovisalvi, A. Torremorell, L. Lagomarsino, H. E. Zagarese & F. Unrein, 2013. The MFW structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130.

    CAS  Google Scholar 

  • Fernando, C., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.

    Google Scholar 

  • Flynn, K. J., D. K. Stoecker, A. Mitra, J. A. Raven, P. M. Glibert, P. H. Hansen, E. Granéli & J. M. Burkholder, 2013. Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research 35: 3–11.

    Google Scholar 

  • Forsberg, B. R., A. H. Devol, J. E. Richey, L. A. Martinelli & H. dos Santos, 1988. Factors controlling nutrient concentrations in Amazon floodplain lakes. Limnology and Oceanography 33: 41–56.

    CAS  Google Scholar 

  • Forsberg, B. R., J. M. Melack, J. E. Richey & T. P. Pimentel, 2017. Regional and seasonal variability in planktonic photosynthesis and planktonic community respiration in Amazon floodplain lakes. Hydrobiologia 800: 187–206.

    CAS  Google Scholar 

  • Galbraith, L. M. & C. W. Burns, 2010. Drivers of ciliate and phytoplankton community structure across a range of water bodies in southern New Zealand. Journal of Plankton Research 32: 327–339.

    Google Scholar 

  • Gasol, J. M., C. Pedrós-Alió & D. Vaqué, 2002. Regulation of bacterial assemblages in oligotrophic plankton systems: results from experimental and empirical approaches. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 81: 435–452.

    CAS  Google Scholar 

  • Hambright, K. D., T. Zohary & H. Güde, 2007. Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography 52: 1018–1025.

    CAS  Google Scholar 

  • Hillebrand, H., C. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Google Scholar 

  • Hu, L. & P. M. Bentler, 1999. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6: 1–55.

    Google Scholar 

  • Huszar, V. L. M. & C. S. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brasil): responses to gradual environmental change. Hydrobiologia 346: 169–181.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen & O. Sortkjær, 1996. Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard. Journal of Plankton Research 18: 1605–1625.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, et al., 2005. Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    CAS  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river flood-plain systems. In Dodge, D. P. (ed.), Proceedings of the International Large Rivers Symposium, Canadian Special Publications in Fisheries and Aquatic Science. NSC Research Press, Ottawa: 110–127.

    Google Scholar 

  • Junk, W. J., M. T. F. Piedade, J. Schöngart, M. C. Haft & M. Adeney, 2011. A classification of major naturally-occurring Amazonian Lowland Wetlands. Wetlands 31: 623–640.

    Google Scholar 

  • Karus, K., T. Paaver, H. Agasild & P. Zingel, 2014. The effects of predation by planktivorous juvenile fish on the MFW. European Journal of Protistology 50: 109–121.

    PubMed  Google Scholar 

  • Latja, R. & K. Salonen, 1978. Carbon analysis for the determination of individual biomass of planktonic animals. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 20: 2556–2560.

    Google Scholar 

  • Leander, B. S., G. Lax, A. Karnkowska, & A. G. B. Simpson, 2017. Euglenida. In Archibald, J. M., Simpson, A. G. B. & C. Slamovits (eds), Handbook of the Protists (2nd edition of the Handbook of Protoctista by Margulis et al.), Springer-Verlag, 39 pp.

  • Loverde-Oliveira, S. M., V. L. M. Huszar, N. Mazzeo & M. Scheffer, 2009. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems 12: 807–819.

    Google Scholar 

  • Lund, J., C. Kipling & E. LeCren, 1958. The inverted microscope method of estimating algal number and the statistical basis of estimation by count. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. P. Talling, 1978. Water Analysis. FBA Scientific Publication No, 36.

  • Manca, M. & P. Comoli, 1999. Studies on zooplankton of Lago Paione Superiore. Journal of Limnology 58: 131–135.

    Google Scholar 

  • Meira, B. R., F. M. Lansac-Tôha, B. T. Segóvia, P. R. B. Buosi, F. A. Lansac-Tôha & L. F. M. Velho, 2018. The importance of herbivory by protists in lakes of a tropical floodplain system. Aquatic Ecology 52(2–3): 193–210.

    CAS  Google Scholar 

  • Menezes, J. M., 2010. Carbono em lagos amazônicos: conceitos gerais de caso (pCO2 e metabolismo aquático em um lago de águas brancas e um lago de águas pretas). Master’s Dissertation, UFRJ, 66 pp.

  • Morana, C., H. Sarmento, J.-P. Descy, J. M. Gasol, A. V. Borges, S. Bouillon & F. Darchambeau, 2014. Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes. Limnology and Oceanography 59: 1364–1375.

    CAS  Google Scholar 

  • Moreira-Turcq, P., M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice & P. Seyler, 2013. Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River. Global Biogeochemical Cycles 27: 119–130.

    CAS  Google Scholar 

  • Müller, H. & W. Geller, 1993. Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Archiv für Hydrobiologie 126: 315–327.

    Google Scholar 

  • Müller-Navarra, D. C., 2008. Food web paradigms: the biochemical view on trophic interactions. International Review of Hydrobiology 93: 489–505.

    Google Scholar 

  • Olrik, K., 1998. Ecology of mixotrophic flagellates with special reference to Chrysophyceae in Danish lakes. Hydrobiologia 369(370): 329–338.

    Google Scholar 

  • Özen, A., Ű. N. Tavşanoğlu, Aİ. Çakıroğlu, E. E. Levi, E. Jeppesen & M. Beklioğlu, 2018. Patterns of microbial food webs in Mediterranean shallow lakes with contrasting nutrient levels and predation pressures. Hydrobiologia 806: 13–27.

    Google Scholar 

  • Pauli, H. R., 1989. A new method to estimate individual dry weights of rotifers. Hydrobiologia 186–187: 355–361.

    Google Scholar 

  • Porter, K. G. & Y. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Google Scholar 

  • Posch, T., B. Eugster, F. Pomati, J. Pernthaler, G. Pitsch & E. M. Eckert, 2015. Network of Interactions Between Ciliates and phytoplankton during spring. Frontiers in Microbiology 6: 1289.

    PubMed  PubMed Central  Google Scholar 

  • Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon: volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnology and Oceanography 34: 1097–1103.

    Google Scholar 

  • R Development Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing.

  • Rejas, D., K. Muylaert & L. De Meester, 2005. Trophic interactions within the MFW in a tropical floodplain lake (Laguna Bufeos, Bolivia). Revista de Biología Tropical 53.

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. International Ecology Institute (ECI), Oldendorf/Luhe, Germany.

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. Journal of Plankton Research 7: 279–294.

    Google Scholar 

  • Roland, F., L. M. Lobão, L. O. Vidal, E. Jeppesen, R. Paranhos & V. L. M. Huszar, 2010. Relationships between pelagic bacteria and phytoplankton abundances in contrasting tropical freshwaters. Aquatic Microbial Ecology 60: 261–272.

    Google Scholar 

  • Rosseel, Y., 2014. Structural Equation Modeling with lavaan. 1–128.

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archiv für Hydrobiologie, Beihefte, Ergebnisse der Limnologie 8: 71–76.

    Google Scholar 

  • Sarmento, H., 2012. New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia 686: 1–14.

    Google Scholar 

  • Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol & J.-P. Descy, 2008. Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwater Biology 53: 756–771.

    Google Scholar 

  • Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading Expectation, Experiences, Extrapolation. Academia Verlag Richardz, St. Augustin: 497.

    Google Scholar 

  • Schindler, D. E., S. R. Carpenter, J. J. Cole, J. F. Kitchell & M. L. Pace, 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277: 248–251.

    CAS  Google Scholar 

  • Segovia, B. T., D. G. Pereira, L. M. Bini, B. R. Meira, V. S. Nishida, F. A. Lansac-Tôha & L. F. M. Velho, 2015. The role of microorganisms in a planktonic food web of a floodplain lake. Microbial Ecology 69: 225–233.

    PubMed  Google Scholar 

  • Segovia, B. T., C. D. Domingues, B. R. Meira, F. M. Lansac-Toha, P. Fermani, F. Unrein, L. M. Lobao, F. Roland, L. F. Velho & H. Sarmento, 2016. Coupling between heterotrophic nanoflagellates and bacteria in fresh waters: does latitude make a difference? Frontiers in Microbiology 7: 114.

    PubMed  PubMed Central  Google Scholar 

  • Segovia, B. T., B. R. Meira, F. M. Lansac-Toha, F. E. Amadeo, F. Unrein, L. F. M. Velho & H. Sarmento, 2018. Growth and cytometric diversity of bacterial assemblages under different top-down control regimes by using a size-fractionation approach. Journal of Plankton Research 40: 129–141.

    Google Scholar 

  • Silva, L. H. S., V. L. M. Huszar, M. M. Marinho, L. M. Rangel, J. Brasil, C. C. Domingues, C. C. Branco & F. Roland, 2014. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica 48: 1–10.

    CAS  Google Scholar 

  • Šimek, K., M. Macek, J. Pernthaler, V. Straškrabová & R. Psenner, 1996. Can freshwater planktonic ciliates survive on a diet of picoplankton? Journal of Plankton Research 18: 597–613.

    Google Scholar 

  • Šimek, K., K. Hornák, M. Masín, U. Christaki, J. Nedoma, M. G. Weinbauer & J. R. Dolan, 2003. Comparing the effects of resource enrichment and grazing on a bacterioplankton community of a meso-eutrophic reservoir. Aquatic Ecology 31: 123–135.

    Google Scholar 

  • Šimek, K., K. Horňák, J. Jezbera, M. Mašín, J. Nedoma, J. M. Gasol & M. Schauer, 2005. Influence of top-down and bottom-up manipulation on the R-BT065 subcluster of β-Proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Applied and Environmental Microbiology 71: 2381–2390.

    PubMed  PubMed Central  Google Scholar 

  • Sioli, H., 1984. The Amazon and its main affluents: hydrography, morphology of the river types. In Sioli, H. (ed.), The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk Publishers, Dordrecht: 127–166.

    Google Scholar 

  • Steiger, J. H., 2007. Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences 42: 893–898.

    Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1991. Phototrophic picoplankton: community composition, abundance and distribution across a gradient of oligotrophic Columbia and Yukon Territory lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76: 581–601.

    Google Scholar 

  • Uehlinger, V., 1964. Étude statistique des méthodes de dénombrement planctonique. Archives des Sciences 17: 121–223.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung für theoretische und angewandte Limnologie: Mitteilungen 9: 1–38.

    Google Scholar 

  • Vidal, L. O., G. Abril, L. F. Artigas, M. L. Melo, M. C. Bernardes, L. M. Lobão, M. C. Reis, P. Moreira-Turcq, M. Benedetti, V. L. Tornisielo & F. Roland, 2015. Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.01054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward, B. A. & M. J. Follows, 2016. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proceedings of the National Academy of Sciences of the USA 113: 2958–2963.

    CAS  PubMed  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Composition and Biomass of Phytoplankton. In Wetzel, R. G. & G. E. Likens (eds), Limnological Analyses, 3rd ed. Springer, New York: 147–154.

    Google Scholar 

  • Zubkov, M. V., M. A. Sleigh, G. A. Tarran, P. H. Burkill & R. J. G. Leakey, 1998. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°. Deep-Sea Research I 45: 1339–1355.

    Google Scholar 

Download references

Acknowledgements

We express our gratitude to Raimundo and Rongelina for providing access to the lake and sometimes much more. We thank Janet W. Reid (JWR Associates) for revising the English text. This research was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil CNPq (Grant 552331/2011-2). VH was partially supported by CNPq (Grant 304284/2017-3). HS’s work was supported by CNPq (Grant 309514/2017-7) and by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant 2014/13139-3). We would also like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a Master’s scholarship for IF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. M. Huszar.

Additional information

Guest editors: Hugo Sarmento, Irina Izaguirre, Vanessa Becker & Vera L. M. Huszar / Phytoplankton and its Biotic Interactions

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feitosa, I.B., Huszar, V.L.M., Domingues, C.D. et al. Plankton community interactions in an Amazonian floodplain lake, from bacteria to zooplankton. Hydrobiologia 831, 55–70 (2019). https://doi.org/10.1007/s10750-018-3855-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3855-x

Keywords

Navigation