Skip to main content
Log in

Dynamics of shallow lake cover types in relation to Paraná River flood pulses: assessment with multitemporal Landsat data

Hydrobiologia Aims and scope Submit manuscript

Abstract

The presence of shallow lakes (SL) is typical of large floodplains with wetland landscapes. By taking into account the dynamic behavior of SL, multitemporal remote sensing data can be used to delineate and monitor water extent and SL cover types. The aim of this study was to analyze the spatial and temporal patterns of SL coverages related to flood pulses in the Lower Paraná River floodplain. SL were delineated with a frequency analysis over a 1987–2015 time series of the Normalized Difference Vegetation Index derived from Landsat 5-TM and 8-OLI data. A total of 303 SL were identified (22% of the study area). Most of the SL were small, only eight were larger than 1.5 km2 (66% of the total SL area). Five dominant SL cover types were identified by using multitemporal Landsat data. The dynamics of these cover types were analyzed along seven flood pulses and we described six typical temporal patterns that repeated and characterized most of the SL areas. Vegetation quickly recovered after floods, except for extreme floods related to the occurrence of El Niño-Southern Oscillation events. The historical Landsat data turn out to be valuable tools for the reconstructions of historical processes in floodplains of large rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aceñolaza, P. G., A. Manzano, E. Rodríguez, L. Sanchez, A. L. Ronchi, E. Gimenez, D. Demonte & Z. Y. Marchetti, 2008. Biodiversidad de la región superior del Complejo Deltaico del Río Paraná. In Aceñolaza, F. G. (ed.), Temas de la Biodiversidad del Litoral Fluvial Argentino III. Miscelánea INSUGEO, San Miguel de Tucumán: 293–308.

    Google Scholar 

  • Alarcón, J., R. Szupiany, M. Montagnini, H. E. Gaudin, H. H. Prendes & M. L. Amsler, 2003. Evaluación del transporte de sedimentos en el tramo medio del río Paraná. Primer Simposio Regional sobre Hidráulica de Ríos, Buenos Aires.

    Google Scholar 

  • Alcântara, E., C. Barbosa, J. Stech, E. Novo & Y. Shimabukuro, 2009. Improving the spectral unmixing algorithm to map water turbidity distributions. Environmental Modelling and Software 24: 1051–1061.

    Article  Google Scholar 

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Article  Google Scholar 

  • Amsler, M. L., E. C. Drago & A. R. Paira, 2007. Fluvial sediments: main channel and floodplain interrelationships. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin: 123–142.

    Chapter  Google Scholar 

  • Baigún, C. R. M. M., A. Puig, P. G. Minotti, P. Kandus, R. D. Quintana, R. L. Vicari, R. F. Bó, N. O. Oldani & J. A. Nestler, 2008. Resource use in the Parana River Delta (Argentina): moving away from an ecohydrological approach? Ecohydrology & Hydrobiology 8: 245–262.

    Article  Google Scholar 

  • Böhme, B., F. Steinbruch, R. Gloaguen, H. Heilmeier & B. Merkel, 2006. Geomorphology, hydrology, and ecology of Lake Urema, central Mozambique, with focus on lake extent changes. Physics and Chemistry of the Earth 31: 745–752.

    Article  Google Scholar 

  • Bornette, G. & C. Amoros, 1996. Disturbance regimes and vegetation dynamics: role of floods in riverine wetlands. Journal of Vegetation Science 7: 615–622.

    Article  Google Scholar 

  • Bornette, G., E. Tabacchi, C. Hupp, S. Puijalon & J. C. Rostan, 2008. A model of plant strategies in fluvial hydrosystems. Freshwater Biology 53: 1692–1705.

    Article  Google Scholar 

  • Borro, M. M., N. S. Morandeira, P. Kandus, M. M. Salvia, P. G. Minotti & P. Perna, 2014. Mapping shallow lakes in a large South American floodplain: a frequency approach on multitemporal Landsat TM/ETM data. Journal of Hydrology 512: 39–52.

    Article  Google Scholar 

  • Carignan, R. & J. J. Neiff, 1992. Nutrient dynamics in the floodplain ponds of the Paraná River dominated by the water hyacinth Eichornia crassipes. Biogeochemistry 17: 85–121.

    Article  CAS  Google Scholar 

  • Cohen, J. A., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20: 213–220.

    Article  Google Scholar 

  • Cózar, A., C. M. García, J. A. Gálvez, S. A. Loiselle, L. Bracchini & A. Cognetta, 2005. Remote sensing imagery analysis of the lacustrine system of Ibera wetland (Argentina). Ecological Modelling 186: 29–41.

    Article  Google Scholar 

  • de Moraes Novo, E. M. L., C. C. de Farias Barbosa, R. M. Freitas, Y. E. Shimabukuro, J. M. Melack & W. P. Filho, 2006. Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images. Limnology 7: 153–161.

    Article  CAS  Google Scholar 

  • Drago, E. C., 2007. The physical dynamics of the river-lake floodplain system. In Iriondo, M. H., J. Paggi & M. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin: 83–123.

    Chapter  Google Scholar 

  • Dronova, I., P. Gong, L. Wang & L. Zhong, 2015. Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sensing of Environment 158: 193–206.

    Article  Google Scholar 

  • Franceschi, E. A., P. S. Torres, D. E. Prado & J. P. Lewis, 2000. Disturbance, sucession and stability: a ten year study of temporal variation of species composition after a catastrophic flood in the river Paraná, Argentina. Community Ecology 1: 205–214.

    Article  Google Scholar 

  • Furtado, L. F. D. A., T. S. F. Silva, P. J. F. Fernandes & E. M. L. D. M. Novo, 2015. Land cover classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi-sensor and image fusion techniques. Acta Amazonica 45: 195–202.

    Article  Google Scholar 

  • Hess, L. L., J. M. Melack, E. M. L. M. Novo, C. C. F. Barbosa & M. Gastil, 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404–428.

    Article  Google Scholar 

  • Hess, L. L., J. M. Melack, A. G. Affonso, C. Barbosa, M. Gastil-Buhl & E. M. L. M. Novo, 2015. Wetlands of the Lowland Amazon Basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35: 745–756.

    Article  Google Scholar 

  • Instituto Geográfico Nacional, 2000. SIG 250. SIG 250., http://www.ign.gob.ar/sig#descarga.

  • INTA, 2015. Valores promedios de la serie histórica Paraná 1934–2014. https://inta.gob.ar/paginas/agrometeorologia – paran.

  • Iriondo, M. H. & E. Scotta, 1979. The evolution of the Paraná river delta. Proceedings of the 1978 International Symposium on Coastal Evolution in the Quaternary: 405–418.

  • Jaime, P. R. & Á. N. Menéndez, 2002. Análisis del régimen hidrológico de los ríos Paraná y Uruguay. Instituto Nacional del Agua, Laboratorio de Hidráulica.

  • Jakubauskas, M., K. Kindscher, A. Fraser, D. Debinski & K. P. Price, 2000. Close-range remote sensing of aquatic macrophyte vegetation cover. International Journal of Remote Sensing 21: 3533–3538.

    Article  Google Scholar 

  • Jardine, T. D., N. R. Bond, M. A. Burford, M. J. Kennard, D. P. Ward, P. Bayliss, P. M. Davies, M. M. Douglas, S. K. Hamilton, J. M. Melack, R. J. Naiman, N. E. Pettit, B. J. Pusey, D. M. Warfe & S. E. Bunn, 2015. Does flood rhythm drive ecosystem responses in tropical riverscapes? Ecology 96: 684–692.

    Article  Google Scholar 

  • Jensen, J. R., 1996. Thematic Information Extraction: Image Classification Introductory. In Jensen, J. R., Introductory Digital Image Processing. A remote sensing perspective. Prentice Hall, New Jersey, United States: 197–256.

  • Jones, H. G. & R. A. Vaughan, 2010. Remote Sensing of Vegetation. Oxford University Press, New York.

    Google Scholar 

  • Junk, W. J., 1997. General aspects of floodplain ecology with special reference to Amazonian floodplains. In Junk, W. J. (ed), The Central Amazon Floodplain: Ecology of a Pulsing System. Springer, Berlin: 3–20.

  • Junk, W. J. & M. T. F. Piedade, 1993. Herbaceous plants of the Amazon floodplain near Manaus: species diversity and adaptations to the flood pulse. Acta Amazonica 12: 467–484.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Keddy, P. A., 2010. Zonation: shorelines as a prism. In Keddy, P. A., Wetland Ecology. Principles and Conservation. Cambridge University Press, United Kingdom: 269–299.

  • Latrubesse, E. M., J. C. Stevaux & R. Sinha, 2005. Tropical rivers. Geomorphology 70: 187–206.

    Article  Google Scholar 

  • Liu, X., Z. Yang, S. Yuan & H. Wang, 2017. A novel methodology for the assessment of water level requirements in shallow lakes. Ecological Engineering 102: 31–38.

    Article  Google Scholar 

  • Long, C. M. & T. M. Pavelsky, 2013. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sensing of Environment 129: 197–209.

    Article  Google Scholar 

  • Lyons, E. A. & Y. Sheng, 2018. LakeTime: automated seasonal scene selection for global lake mapping using Landsat ETM + and OLI. Remote Sensing 10: 1–13.

    Google Scholar 

  • Marchetti, Z. Y. & P. G. Aceñolaza, 2012. Pulse regime and vegetation communities in fluvial systems: the case of the Parana River floodplain, Argentina. Flora – Morphology, Distribution, Functional Ecology of Plants 207: 795–804.

    Article  Google Scholar 

  • Marchetti, Z. Y. & P. A. Scarabotti, 2016. Macrophyte assemblages in relation to environmental, temporal and spatial variations in lakes of a subtropical floodplain-river system, Argentina. Flora 225: 82–91.

    Article  Google Scholar 

  • Melack, J. M. & B. Forsberg, 2001. Biogeochemistry of Amazon floodplain lakes and associated wetlands. In McClain, M. E., R. L. Victoria & J. E. Richey (eds), The Biogeochemistry of the Amazon Basin. Oxford University Press, Oxford: 235–276.

    Google Scholar 

  • Melack, J. M., E. M. L. M. Novo, B. R. Forsberg, M. T. F. Piedade & L. Maurice, 2009. Floodplain ecosystem processes. Amazonia and Global Change, Geophysical Monograph Series 186: 525–541.

    Article  CAS  Google Scholar 

  • Mertes, L. A. K., T. Dunne & L. A. Martinelli, 1996. Channel-floodplain geomorphology along the Solimões-Amazon River, Brazil. Geological Society of America Bulletin 108: 1089–1107.

    Article  Google Scholar 

  • Morandeira, N., F. Grings, C. Facchinetti & P. Kandus, 2016. Mapping plant functional types in floodplain wetlands: an analysis of C-band polarimetric SAR data from RADARSAT-2. Remote Sensing 8: 1–17.

    Article  Google Scholar 

  • Morandeira, N. S. & P. Kandus, 2015. Multi-scale analysis of environmental constraints on macrophyte distribution, floristic groups and plant diversity in the Lower Paraná River floodplain. Aquatic Botany 123: 13–25.

    Article  Google Scholar 

  • Neiff, J. J., 1982. Esquema sucesional de la vegetación en islas flotantes del chaco Argentino. Boletín de la Sociedad Argentina de Botánica 21: 325–341.

    Google Scholar 

  • Neiff, J. J., 1990. Ideas para la integración ecológica del Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • Neiff, J. J., 1996. Large rivers of South America: toward the new approach. Verhandlungen des Internationalen Verein Limnologie 26: 167–180.

    Google Scholar 

  • Neiff, J. J., 1999. El régimen de pulsos en ríos y grandes humedales de Sudamérica. In Malvárez, A. I. (ed.), Tópicos sobre humedales subtropicales y templados de Sudamérica. UNESCO, Montevideo, Uruguay: 99–150.

    Google Scholar 

  • Okin, G. S. & J. Gu, 2015. The impact of atmospheric conditions and instrument noise on atmospheric correction and spectral mixture analysis of multispectral imagery. Remote Sensing of Environment 164: 130–141.

    Article  Google Scholar 

  • Paira, A. R. & E. C. Drago, 2007. Origin, evolution, and types of floodplain water bodies. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin: 53–81.

    Chapter  Google Scholar 

  • Park, E. & E. M. Latrubesse, 2017. The hydro-geomorphologic complexity of the lower Amazon River floodplain and hydrological connectivity assessed by remote sensing and field control. Remote Sensing of Environment 198: 321–332.

    Article  Google Scholar 

  • Parsons, M., C. A. McLoughlin, K. A. Kotschy, K. H. Rogers & M. W. Rountree, 2005. The effects of extreme floods on the biophysical heterogeneity of river landscapes. Frontiers in Ecology and the Environment 3: 487–494.

    Article  Google Scholar 

  • Pavelsky, T. M. & L. C. Smith, 2009. Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resources Research 45: 1–16.

    Article  Google Scholar 

  • Puig, A., H. F. Olguín Salinas & J. A. Borús, 2016. Recent changes (1973–2014 versus 1903–1972) in the flow regime of the Lower Paraná River and current fluvial pollution warnings in its Delta Biosphere Reserve. Environmental Science and Pollution Research 23: 11471–11492.

    Article  CAS  Google Scholar 

  • QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation Project, http://qgis.osgeo.org.

  • Quirós, R. & S. Cuch, 1989. The fisheries and limnology of the lower Plata Basin. In Dodge, D. P. (ed), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences, Ottawa: 429–443.

  • Quirós, R., M. B. Boveri, C. A. Petracchi, A. M. Rennella, J. J. Rosso, A. Sosnovsky & H. Von Bernard, 2006. The effects of the Pampa wetlands agriculturization on shallow lakes eutrophication. In Tundis, J. G., T. Matsumura-Tundis & C. S. Galli (eds), Eutrofização na América do Sul: Causas, conseqüências e tecnologias de gerenciamento e controle. International Institute of Ecology, Sao Carlos: 1–16.

    Google Scholar 

  • Ritchie, J. C., F. R. Schiebe & J. R. McHenry, 1976. Remote sensing of suspended sediments in surface waters. Photogrammetric Engineering & Remote Sensing 42: 1539–1545.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Sheng, L., Z. Xiu-Ping, L. Rong-Fang, X. Xiao-Hua & F. Qun, 2011. Analysis the changes of annual for Poyang Lake wetland vegetation based on MODIS monitoring. Procedia Environmental Sciences 10: 1841–1846.

    Article  Google Scholar 

  • Silva, T. S. F., M. P. F. Costa, J. M. Melack & E. M. L. M. Novo, 2008. Remote sensing of aquatic vegetation: theory and applications. Environmental Monitoring and Assessment 140: 131–145.

    Article  Google Scholar 

  • Silva, T. S. F., M. P. F. Costa & J. M. Melack, 2010. Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: a remote sensing approach. Remote Sensing of Environment 114: 1998–2010.

    Article  Google Scholar 

  • Silva, T. S. F., J. M. B. Melack & E. M. L. M. Novo, 2013. Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain. Global Change Biology 19: 3379–3389.

    PubMed  Google Scholar 

  • Sippel, S. J., S. K. Hamilton & J. M. Melack, 1992. Inundation area and morphometry of lakes on the Amazon River floodplain, Brazil. Archiv fur Hydrobiologie 123: 385–400.

    Google Scholar 

  • Stumpf, R. P., 1992. Remote sensing of water clarity and suspended sediments in coastal waters: needs and solutions for pollution monitoring, control, and abatement. Proceedings of the 1st Thematic Conference on Remote Sensing for Marine and Coastal Environments: 293–305.

  • Terborgh, J. W., L. C. Davenport, A. U. Belcon, G. Katul, J. J. Swenson, S. C. Fritz & P. A. Baker, 2017. Twenty-three-year timeline of ecological stable states and regime shifts in upper Amazon oxbow lakes. Hydrobiologia 807: 99–111.

    Article  Google Scholar 

  • Tockner, K., M. Pusch, D. Borchardt & M. S. Lorang, 2010. Multiple stressors in coupled river–floodplain ecosystems. Freshwater Biology 55: 135–151.

    Article  Google Scholar 

  • Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127–150.

    Article  Google Scholar 

  • Van Geest, G. J., H. Coops, M. Scheffer & E. H. van Nes, 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10: 37–47.

    Article  Google Scholar 

  • Vermote, E., C. Justice, M. Claverie & B. Franch, 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment 185: 46–56.

    Article  Google Scholar 

  • Zhao, X., A. Stein & X. L. Chen, 2011. Monitoring the dynamics of wetland inundation by random sets on multi-temporal images. Remote Sensing of Environment 115: 2390–2401.

    Article  Google Scholar 

  • Zimba, H., B. Kawawa, A. Chabala, W. Phiri, P. Selsam, M. Meinhardt & I. Nyambe, 2018. Assessment of trends in inundation extent in the Barotse Floodplain, upper Zambezi River Basin: a remote sensing-based approach. Journal of Hydrology: Regional Studies 15: 149–170.

    Google Scholar 

Download references

Acknowledgements

The fieldwork was conducted at farms owned by G. Mannero. He and his wife were very kind and collaborated in the fieldwork. This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (Argentina) [PICT 0824/2014]. We thank to anonymous reviewers for their valuable comments and suggestions on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maira Patricia Gayol.

Additional information

Handling editor: Dani Boix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayol, M.P., Morandeira, N.S. & Kandus, P. Dynamics of shallow lake cover types in relation to Paraná River flood pulses: assessment with multitemporal Landsat data. Hydrobiologia 833, 9–24 (2019). https://doi.org/10.1007/s10750-018-3847-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3847-x

Keywords

Navigation