, Volume 829, Issue 1, pp 307–322 | Cite as

Carbon dioxide enrichment alters predator avoidance and sex determination but only sex is mediated by GABAA receptors

  • Jean-Claude Abboud
  • Edgar A. Bartolome
  • Mayra Blanco
  • Annalise C. Kress
  • Ian Y. Ellis
  • Perry K. Yazzolino
  • Kamrin I. Sorensen
  • James R. Winslow
  • David A. Cleary
  • Hugh LefcortEmail author
Primary Research Paper


We hypothesized that near-future elevated CO2 would affect the antipredatory behavior of two freshwater organisms; a pulmonate gastropod (Physella columbiana) and a cladoceran crustacean (Daphnia magna). Studies have found that pCO2 and increased acidification due to CO2 impedes fright responses to predators by activating GABAA receptors. After administration of predator-derived kairomones and conspecific alarm cues, we also briefly exposed some of the animals to gabazine which is a GABAA receptor antagonist to restore a fright response. We found that added carbon dioxide negatively affected the antipredatory behavior of both species but gabazine did not reverse this effect. To further examine the effect of CO2 and gabazine, we also tested the effect of stressful crowding, cold, and acidic conditions on the production of male daphnid offspring. An increase in ratio of male to female offspring is a common and expected response to stress by daphnids. We found that stress increased the production of males and gabazine reversed this at a pH of 5.5 but not at pH 6.2 or 6.5. Our study suggest that while the main negative effects of anthropogenic CO2 enrichment can be robust, the myriad indirect effects of CO2 make predictions about future predator prey systems less clear.


Acidification Predator/prey CO2 Snail Daphnia 



We thank Paul Abboud for help with experiments, Betsy Bancroft for supplying sticklebacks, and Elizabeth Addis, Betsy Bancroft, Frances Lefcort, and two anonymous reviewers for extremely helpful comments on the manuscript. Funding was provided by the Gonzaga University Science Research Program.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Allan, B. J., P. Domenici, M. I. McCormick, S. A. Watson & P. L. Munday, 2013. Elevated CO2 affects predator-prey interactions through altered performance. PLoS ONE 8: e58520.PubMedPubMedCentralGoogle Scholar
  2. Atema, J. & D. Stenzler, 1977. Alarm substance of the marine mud snail, Nassarius obsoletus: Biological characterization and possible evolution. Journal of Chemical Ecology 3: 173–187.Google Scholar
  3. Barnhart, C. M., 1992. Acid-base regulation in pulmonate molluscs. Journal of Experimental Zoology 263: 120–126.Google Scholar
  4. Barry, M. J., 1998. Endosulfan-enhanced crest induction in Daphnia longicephala: evidence for cholinergic innervation of kairomone receptors. Journal of Plankton Research 20: 1219–1231.Google Scholar
  5. Belivermiş, M., M. Warnau, M. Metian, F. Oberhänsli, J. L. Teyssié & T. Lacoue-Labarthe, 2016. Limited effects of increased CO2 and temperature on metal and radionuclide bioaccumulation in a sessile invertebrate, the oyster Crassostrea gigas. ICES Journal of Marine Science 73: 753–763.Google Scholar
  6. Benson, J. A., 1989. A novel GABA receptor in the heart of a primitive arthropod, Limulus polyphemus. Journal of Experimental Biology 147: 421–438.Google Scholar
  7. Brauner, C. J. & D. W. Baker, 2009. Patterns of acid–base regulation during exposure to hypercarbia in fishes. In Glass, M. & S. Wood (eds), Cardio-respiratory control in vertebrates. Springer, Berlin, Heidelberg: 43–63.Google Scholar
  8. Browman, H. I., 2016. Applying organized scepticism to ocean acidification research. ICES Journal of Marine Science 73: 529–536.Google Scholar
  9. Briffa, M., K. de la Haye & P. L. Munday, 2012. High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Marine Pollution Bulletin 64: 1519–1528.PubMedGoogle Scholar
  10. Cao, Z., F. Mu, X. Wei & Y. Sun, 2015. Influence of CO2-induced seawater acidification on the development and lifetime reproduction of Tigriopus japonicus Mori, 1938. Journal of Natural History 49: 2813–2826.Google Scholar
  11. Calosi, P., D. T. Bilton & J. I. Spicer, 2007. The diving response of a diving beetle: effects of temperature and acidification. Journal of Zoology 273: 289–297.Google Scholar
  12. Chevalier, J., E. Harscoët, M. Keller, P. Pandard, J. Cachot & M. Grote, 2015. Exploration of Daphnia behavioral effect profiles induced by a broad range of toxicants with different modes of action. Environmental Toxicology and Chemistry 34: 1760–1769.PubMedGoogle Scholar
  13. Chivers, D., M. McCormick, G. Nilsson, P. Munday, S. Watson, M. Meekan, M. Mitchell, K. Corkill & M. Ferrari, 2014. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biology 20: 515–522.PubMedGoogle Scholar
  14. Chopelet, J., P. U. Blier & F. Dufresne, 2008. Plasticity of growth rate and metabolism in Daphnia magna populations from different thermal habitats. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 309: 553–562.Google Scholar
  15. Chung, W. S., N. J. Marshall, S. A. Watson, P. L. Munday & G. E. Nilsson, 2014. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. The Journal of Experimental Biology 217: 323–326.PubMedGoogle Scholar
  16. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. Middleburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.Google Scholar
  17. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. Bioscience 49: 119–127.Google Scholar
  18. Crossno, S. K., L. H. Kalbus & G. E. Kalbus, 1996. Determinations of carbon dioxide by titration. Journal of Chemical Education 73: 175–176.Google Scholar
  19. DeMille, C., S. Arnott & G. Pyle, 2016. Variation in copper effects on kairomone-mediated responses in Daphnia pulicaria. Ecotoxicology and Environmental Safety 126: 264–272.PubMedGoogle Scholar
  20. Dickey, B. F. & T. M. McCarthy, 2007. Predator and prey interactions between crayfish (Orconectes juvenilis) and snails (Physa gyrina) are affected by spatial scale and chemical cues. Invertebrate Biology 126: 57–66.Google Scholar
  21. Engelbrecht, W., O. Hesse, J. Wolinska & C. Laforsch, 2013. Two threats at once: encounters with predator cues alter host life-history and morphological responses to parasite spores. Hydrobiologia 715: 93–100.Google Scholar
  22. Esbaugh, A. J., R. Heuer & M. Grosell, 2012. Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta. Journal of Comparative Physiology B 182: 921–934.Google Scholar
  23. Feely, R. A., S. C. Doney & S. R. Cooley, 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22: 36–47.Google Scholar
  24. Ferrari, M., M. McCormick, P. Munday, M. Meekan, D. Dixson, O. Lonnstedt & D. Chivers, 2011. Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecology Letters 14: 1143–1148.PubMedGoogle Scholar
  25. Gattuso, J. P., K. Gao, K. Lee, B. Rost & K. G. Schulz, 2010. Approaches and tools to manipulate the carbonate chemistry. In Riebesell, U., V. J. Fabry, L. Hansson & J. P. Gattuso (eds), Guide to best practices for ocean acidification research and data reporting. European Union, Luxembourg: 41–52.Google Scholar
  26. Haapala, H., P. Sepponen & E. Meskus, 1975. Effect of Spring floods on water acidity in the Kiiminkijoki Area, Finland. Oikos 26: 26–31.Google Scholar
  27. Hamilton, T. J., A. Holcombe & M. Tresguerres, 2014. CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning. Proceedings of the Royal Society B 281: 20132509.PubMedGoogle Scholar
  28. Hasler, C. T., D. Butman, J. D. Jeffrey & C. D. Suski, 2016. Freshwater biota and rising pCO2? Ecology Letters 19: 98–108.PubMedGoogle Scholar
  29. Havens, K., J. Beaver, E. Manis & T. East, 2015. Inter-lake comparisons indicate that fish predation, rather than high temperature, is the major driver of summer decline in Daphnia and other changes among cladoceran zooplankton in subtropical Florida lakes. Hydrobiologia 750: 57–67.Google Scholar
  30. Henschel, O., K. E. Gipson & A. Bordey, 2008. GABAA receptors, anesthetics and anticonvulsants in brain development. CNS & Neurological Disorders-Drug Targets 7: 211–224.Google Scholar
  31. Herzog, Q., M. Rabus, B. Wolfschoon Ribeiro & C. Laforsch, 2016. Inducible defenses with a “twist”: Daphnia barbata abandons bilateral symmetry in response to an ancient predator. Plos ONE 11: 1–6.Google Scholar
  32. Holcombe, G. W., G. L. Phipps & J. W. Marier, 1984. Methods for conducting snail (Aplexa hypnorum) embryo through adult exposures: effects of cadmium and reduced pH levels. Archives of Environmental Contamination and Toxicology 13: 627–634.Google Scholar
  33. Ignace, D. D., S. I. Dodson & D. R. Kashian, 2011. Identification of the critical timing of sex determination in Daphnia magna (Crustacea, Branchiopoda) for use in toxicological studies. Hydrobiologia 668: 117–123.Google Scholar
  34. IPCC, 2014. Climate change 2014: synthesis report. In Pachauri, R. K., L. A. Meyer & Core Writing Team (eds), Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva: 151.Google Scholar
  35. Kim, T. W., J. Taylor, C. Lovera & J. P. Barry, 2016. CO2-driven decrease in pH disrupts olfactory behaviour and increases individual variation in deep-sea hermit crabs. ICES Journal of Marine Science 73: 613–619.Google Scholar
  36. Kroeker, K. J., S. Sanford, B. M. Jellison & B. P. Gaylord, 2014. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs. Biological Bulletin 226: 211–222.PubMedGoogle Scholar
  37. Isari, S., S. Zervoudake, E. Saiz, C. Pelejero & J. Peters, 2015. Copepod vital rates under CO2-induced acidification: a calanoid species and a cyclopoid species under short-term exposures. Journal of Plankton Research 37: 912–922.Google Scholar
  38. Jansen, M., C. Buser, R. Stoks, L. De Meester & A. Cielen, 2011. The interplay of past and current stress exposure on the water flea Daphnia. Functional Ecology 25: 974–982.Google Scholar
  39. Leduc, A. O. H. C., E. Roh, M. C. Harvey & G. E. Brown, 2006. Impaired detection of chemical alarm cues by juvenile wild Atlantic salmon (Salmo salar) in a weakly acidic environment. Canadian Journal of Fisheries and Aquatic Sciences 63: 2356–2363.Google Scholar
  40. Leduc, A. O. H. C., P. L. Munday, G. E. Brown & M. C. O. Ferrari, 2013. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120447.Google Scholar
  41. Lefcort, F., K. Venstrom, J. A. McDonald & L. F. Reichardt, 1992. Regulation of expression of fibronectin and its receptor, alpha 5 beta 1, during development and regeneration of peripheral nerve. Development 116: 767–782.PubMedPubMedCentralGoogle Scholar
  42. Lefcort, H., 1996. An adaptive, chemically mediated fright response in tadpoles of the southern leopard frog, Rana utricularia. Copeia 1996: 455–459.Google Scholar
  43. Lefcort, H. & B. P. Kotler, 2017. Life in a near-future atmosphere: carbon dioxide enrichment increases plant growth and alters the behavior of a terrestrial snail but not a terrestrial beetle. Israel Journal of Ecology and Evolution 63: 33–38.Google Scholar
  44. Lefcort, H., D. P. Abbott, D. A. Cleary, E. Howell, N. C. Keller & M. M. Smith, 2004. Aquatic snails from mining sites have evolved to detect and avoid heavy metals. Archives of Environmental Contamination and Toxicology 46: 478–484.PubMedGoogle Scholar
  45. Lefcort, H., D. A. Cleary, A. M. Marble, M. V. Phillips, T. J. Stoddard, L. M. Tuthill & J. R. Winslow, 2015. Snails from heavy-metal polluted environments have reduced sensitivity to carbon dioxide-induced acidity. SpringerPlus 4: 1–9.Google Scholar
  46. Lewis, E., D. W. R. Wallace, & L. J. Allison, 1998. CO2SYS-Program developed for CO2 system calculations.
  47. Li, Y., W. X. Wang & M. Wang, 2017. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification. Scientific Reports 7: 324.PubMedPubMedCentralGoogle Scholar
  48. Lippert, K. A., J. M. Gunn & G. E. Morgan, 2007. Effects of colonizing predators on yellow perch (Perca flavescens) populations in lakes recovering from acidification and metal stress. Canadian Journal of Fisheries and Aquatic Sciences 64: 1413–1428.Google Scholar
  49. Maberly, S. C., 1996. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biology 35: 579–598.Google Scholar
  50. Mason, B. J., 1992. Acid rain: its causes and its effects on inland waters. In Mason, B. J. (ed.), Science, technology, and, society series. Oxford University Press, Clarendon Press, Oxford, New York.Google Scholar
  51. Maud, C. O., M. I. Ferrari, S. A. McCormick, M. G. Meekan, P. L. Munday & D. P. Chivers, 2017. Predation in high CO2 waters: prey fish from high-risk environments are less susceptible to ocean acidification. Integrative and Comparative Biology 57: 55–62.Google Scholar
  52. McCarthy, M. M., A. M. Davis & J. A. Mong, 1996. Excitatory neurotransmission and sexual differentiation of the brain. Brain Research Bulletin 44: 487–495.Google Scholar
  53. McCoole, M. B., B. T. D’Andrea, K. N. Baer & A. E. Christie, 2012. Genomic analyses of gas (nitric oxide and carbon monoxide) and small molecule transmitter (acetylcholine, glutamate and GABA) signaling systems in Daphnia pulex. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 7: 124–160.Google Scholar
  54. McElhany, P., 2016. CO2 sensitivity experiments are not sufficient to show an effect of ocean acidification. ICES Journal of Marine Science 74: 926–928.Google Scholar
  55. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic Relationships in Freshwater Pelagic Ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.Google Scholar
  56. Miyakawa, H., N. Sugimoto, T. Kohyama, T. Iguchi & T. Miura, 2015. Intra-specific variations in reaction norms of predator-induced polyphenism in the water flea Daphnia pulex. Ecological Research 30: 705–713.Google Scholar
  57. Mirza, R. & G. Pyle, 2009. Waterborne metals impair inducible defenses in Daphnia pulex: morphology, life-history traits and encounters with predators. Freshwater Biology 54: 1016–1027.Google Scholar
  58. Munday, P., D. Dixson, M. McCormick, M. Meekan, M. Ferrari & D. Chivers, 2010. Replenishment of fish populations is threatened by ocean acidification. Proceedings National Academy Sciences United States of America 107: 12930–12934.Google Scholar
  59. Navarro, J. M., C. Duarte, P. H. Manríquez, M. A. Lardies, R. Torres, K. Acuña, C. A. Vargas & N. A. Lagos, 2016. Ocean warming and elevated carbon dioxide: multiple stressor impacts on juvenile mussels from southern Chile. ICES Journal of Marine Science 73: 710–764.Google Scholar
  60. Nilsson, G. E., D. L. Dixson, P. Domenici, M. I. McCormick, C. Sorensen, S. A. Watson & P. L. Munday, 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change 2: 201–204.Google Scholar
  61. O’Brien, C. & D. W. Blinn, 1999. The endemic spring snail Pyrgulopsis montezumensis in a high CO2 environment: importance of extreme chemical habitats as refugia. Freshwater Biology 42: 225–234.Google Scholar
  62. Okland, J. & K. A. Okland, 1986. The effects of acid deposition on benthic animals in lakes and streams. Experientia 42: 471–486.Google Scholar
  63. Ou, M., T. J. Hamilton, J. Eom, E. M. Lyall, J. Gallup, A. Jiang, J. Lee, D. A. Close, S. S. Yun & C. J. Brauner, 2015. Responses of pink salmon to CO2-induced aquatic acidification. Nature Climate Change 5: 950–955.Google Scholar
  64. Palma, P., V. L. Palma, R. M. Fernandes, A. M. V. M. Soares & I. R. Barbosa, 2009. Endosulfan sulphate interferes with reproduction, embryonic development and sex differentiation in Daphnia magna. Ecotoxicology and Environmental Safety 72: 344–350.PubMedGoogle Scholar
  65. Pestana, J., A. Soares & D. Baird, 2013. Predator threat assessment in Daphnia magna: the role of kairomones versus conspecific alarm cues. Marine and Freshwater Research 64: 679–686.Google Scholar
  66. Phillips, J. C., G. A. McKinley, V. Bennington, H. A. Bootsma, D. J. Pilcher, R. W. Sterner & N. R. Urban, 2015. The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 28: 136–145.Google Scholar
  67. Pierobon, P., A. Tino, R. Minei & G. Marino, 2004. Different roles of GABA and glycine in the modulation of chemosensory responses in Hydra vulgaris (Cnidaria, Hydrozoa). Hydrobiologia 530(531): 59–66.Google Scholar
  68. Pijanowska, J. & A. Kowalczewski, 1997. Cues from injured Daphnia and from cyclopoids feeding on Daphnia can modify life histories of conspecifics. Hydrobiologia 350: 99–103.Google Scholar
  69. Raymond, P. A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, M. Meybeck, P. Ciai & P. Guth, 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355–359.PubMedGoogle Scholar
  70. Regan, M., A. Turko, J. Heras, M. Andersen, S. Lefevre, W. Tobias, M. Bayley, C. Brauner, H. Do Thi Than, P. Nguyen Thanh & G. Nilsson, 2016. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. Journal of Experimental Biology 219: 109–118.PubMedGoogle Scholar
  71. Reisert, I., K. Lieb, C. Beyer & C. Pilgrim, 1996. Sex differentiation of rat hippocampal GABAergic neurons. European Journal of Neuroscience 8: 1718–1724.PubMedGoogle Scholar
  72. Roozen, F. & M. Lurling, 2001. Behavioural response of Daphnia to olfactory cues from food, competitors and predators. Journal Of Plankton Research 23: 797–808.Google Scholar
  73. Ross, P. M., L. Parker & M. Byrne, 2016. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES Journal of Marine Science 73: 537–549.Google Scholar
  74. Schram, J. B., K. M. Schoenrock, J. B. McClintock, C. D. Amsler & R. A. Angus, 2016. Testing Antarctic resilience: the effects of elevated seawater temperature and decreased pH on two gastropod species. ICES Journal of Marine Science 73: 739–752.Google Scholar
  75. Servos, M. R. & G. L. Mackie, 1986. The effect of short-term acidification during spring snowmelt on selected Mollusca in south-central Ontario. Canadian Journal of Zoology 64: 1690–1695.Google Scholar
  76. Sigel, E., 2002. Mapping of the benzodiazepine recognition site on GABAA receptors. Current Topics in Medicinal Chemistry 2: 833–869.PubMedGoogle Scholar
  77. Staley, K. J., B. L. Soldo & W. R. Proctor, 1995. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269: 977–981.PubMedGoogle Scholar
  78. Stocker, T.F., D. Qin, G. K. Plattner, Tignor M. M. B., S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley, 2013. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Google Scholar
  79. Strahl, J., D. S. Francis, J. Doyle, C. Humphrey & K. E. Fabricius, 2015. Biochemical responses to ocean acidification contrast between tropical corals with high and low abundances at volcanic carbon dioxide seeps. ICES Journal of Marine Science 73: 897–909.Google Scholar
  80. Tepper, J. M. & C. R. Lee, 2007. GABAergic control of substantia nigra dopaminergic neurons. Science Direct 160: 189–208.Google Scholar
  81. Tonkopiĭ, V., N. Podosinovikova, A. Zagrebin, L. Sherstneva, V. Petrov, L. Mukovskiĭ & V. Dolgo-Saburov, 2005. Daphnia magna Straus: a test object for the pharmacological evaluation of GABA-ergic drugs in the whole organism. Eksperimental’naia I Klinicheskaia Farmakologiia 68: 55–58.PubMedGoogle Scholar
  82. Tresguerres, M. & T. J. Hamilton, 2017. Acid–base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. Journal of Experimental Biology 220: 2136–2148.PubMedGoogle Scholar
  83. Tseng, M. & M. I. O’Connor, 2016. Predators modify the evolutionary response of prey to temperature change. Biology Letters 11: 20150798.Google Scholar
  84. Urabe, J. & N. Waki, 2009. Mitigation of adverse effects of rising CO2 on a planktonic herbivore by mixed algal diets. Global Change Biology 15: 523–531.Google Scholar
  85. von Frisch, K., 1938. Zur psychologie des fisch-schwarmes. Die Naturwissenschaften 37: 601–606.Google Scholar
  86. Watson, S., S. Lefevre, M. McCormick, P. Domenici, G. Nilsson & P. Munday, 2013. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proceedings. Biological Sciences/The Royal Society 281: 20132377.Google Scholar
  87. Weber, A. & A. Van Noordwijk, 2002. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals. Journal Of Plankton Research 24: 1335–1348.Google Scholar
  88. Weber, A. K. & R. Pirow, 2009. Physiological responses of Daphnia pulex to acid stress. BMC Physiology 9: 9.PubMedPubMedCentralGoogle Scholar
  89. Weiss, R. F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2: 203–215.Google Scholar
  90. Weiss, L., S. Kruppert, C. Laforsch & R. Tollrian, 2012. Chaoborus and Gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals. Plos ONE 7: 1–8.Google Scholar
  91. Weiss, L. C., F. Leese, C. Laforsch & R. Tollrian, 2015. Dopamine is a key regulator in the signaling pathway underlying predator-induced defenses in Daphnia’. Proceedings of Biological Sciences/The Royal Society 282: 20151440.Google Scholar
  92. Weiss, L. C., L. Pötter, A. Steiger, S. Kruppert, U. Frost & R. Tollrian, 2018. Rising pCO2 in freshwater ecosystems has the potential to negatively affect predator-induced defenses in Daphnia. Current Biology 28: 327–332.PubMedGoogle Scholar
  93. Zou, E. & M. Fingerman, 1997. Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bulletin of Environmental Contamination and Toxicology 58: 596–602.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Claude Abboud
    • 1
  • Edgar A. Bartolome
    • 1
  • Mayra Blanco
    • 1
  • Annalise C. Kress
    • 1
  • Ian Y. Ellis
    • 1
  • Perry K. Yazzolino
    • 1
  • Kamrin I. Sorensen
    • 1
  • James R. Winslow
    • 1
  • David A. Cleary
    • 2
  • Hugh Lefcort
    • 1
    Email author
  1. 1.Biology DepartmentGonzaga UniversitySpokaneUSA
  2. 2.Chemistry DepartmentGonzaga UniversitySpokaneUSA

Personalised recommendations