Skip to main content

Concordance in biological condition and biodiversity between diatom and macroinvertebrate assemblages in Chinese arid-zone streams

Abstract

Understanding the concordance between aquatic assemblages in ecological assessments and their responses to human-induced disturbances are fundamental steps toward achieving sustainable stream and catchment management. Using diatom, macroinvertebrate, and environmental data collected from northwest Chinese arid-land streams, we tested the concordance between the two assemblages in (1) the assessment results using multimetric indices (MMIs), (2) the stressors affecting the MMIs and beta-diversity, and (3) the response trajectories of MMI and beta-diversity to disturbances. Random Forest analyses revealed that diatom and macroinvertebrate metrics responded most sensitively to climatic and geomorphic variables, respectively. Diatom MMI scores had greater precision and responsiveness than macroinvertebrate MMI scores. Diatom MMI scores were negatively related to gradients in observed–expected conductivity, chemical oxygen demand, and vegetated riparian zone width. Macroinvertebrate MMI scores responded strongly to observed–expected mean substrate composition, conductivity, and phosphate. Diatom beta-diversity decreased, as nitrate, channel alternation, and phosphate increased beyond expected natural background levels. Macroinvertebrate beta-diversity was the lowest when both nitrite and % cobble neared their natural background expectations. Our results indicate that protecting aquatic systems from anthropogenic pressures depends not only on revealing causes of impairment, but also on anticipating and understanding the responses to various stressors of multiple stream biotic assemblages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Al-Shami, S., J. Heino, M. R. Che Salmah, A. Abu Hassan, A. H. Suhaila & M. R. Madrus, 2013. Drivers of beta diversity of macroinvertebrate communities in tropical forest streams. Freshwater Biology 58: 1126–1137.

    Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    PubMed  Google Scholar 

  • Angradi, T. R., M. S. Pearson, D. W. Bolgrien, T. M. Jicha, D. L. Taylor & B. H. Hill, 2009. Multimetric macroinvertebrate indices for mid-continent US great rivers. Journal of the North American Benthological Society 28: 785–804.

    Google Scholar 

  • Astorga, A., R. Death, F. Death, R. Paavola, M. Chakraborty & T. Muotka, 2014. Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecology and Evolution 4: 2693–2702.

    PubMed  PubMed Central  Google Scholar 

  • Bae, M. J., F. Li, Y. S. Kwon, N. Chung, H. Choi, S. J. Hwang & Y. S. Park, 2014. Concordance of diatom, macroinvertebrate and fish assemblages in streams at nested spatial scales: implications for ecological integrity. Ecological Indicators 47: 89–101.

    Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed. EPA 841–0B-99-002 US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Beyene, A., T. Addis, D. Kifle, W. Legesse, H. Kloos & L. Triest, 2009. Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia. Ecological Indicators 9: 381–392.

    CAS  Google Scholar 

  • Bini, L. M., V. L. Landeiro, A. A. Padial, T. Siqueira & J. Heino, 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95: 1569–1578.

    PubMed  Google Scholar 

  • Bonada, N., C. Zamora-Munoz, M. Rieradevall & N. Prat, 2005. Ecological and historical filters constraining spatial caddisfly distribution in Mediterranean rivers. Freshwater Biology 50: 781–797.

    Google Scholar 

  • Bowman, M. F. & K. M. Somers, 2006. Evaluating a novel test site analysis (TSA) bioassessment approach. Journal of the North American Benthological Society 25: 712–727.

    Google Scholar 

  • Breiman, L., 2001. Random forests. Machine Learning 45: 5–32.

    Google Scholar 

  • Bryce, S. A., R. M. Hughes & P. R. Kaufmann, 2002. Development of a bird integrity index: using bird assemblages as indicators of riparian condition. Environmental Management 30: 294–310.

    PubMed  Google Scholar 

  • Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, D. Buchwalter, J. Dunlop, O. Frör & J. Lazorchak, 2016. Saving freshwater from salts. Science 351: 914–916.

    PubMed  Google Scholar 

  • Cao, Y., D. P. Larsen & R. M. Hughes, 2001. Evaluating sampling sufficiency in fish assemblage surveys: a similarity-based approach. Canadian Journal of Fisheries and Aquatic Sciences 58: 1782–1793.

    Google Scholar 

  • Cao, Y., C. P. Hawkins, J. R. Olson & M. A. Kosterman, 2007. Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. Journal of the North American Benthological Society 26: 566–585.

    Google Scholar 

  • Carlisle, D. M., C. P. Hawkins, M. R. Meador, M. Potapova & J. Falcone, 2008. Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages. Journal of the North American Benthological Society 27: 16–37.

    Google Scholar 

  • Chen, K., R. M. Hughes, S. Xu, J. Zhang, D. Cai & B. Wang, 2014. Evaluating performance of macroinvertebrate-based adjusted and unadjusted multi-metric indices (MMI) using multi-season and multi-year samples. Ecological Indicators 36: 142–151.

    Google Scholar 

  • Chen, K., R. M. Hughes & B. Wang, 2015. Effects of fixed-count size on macroinvertebrate richness, site separation, and bioassessment of Chinese monsoonal streams. Ecological Indicators 53: 162–170.

    Google Scholar 

  • Chen, K., R. M. Hughes, J. G. Brito, C. G. Leal, R. P. Leitão, J. M. B. de Oliveira-Júnior, V. C. de Oliveira, K. Dias-Silva, S. F. B. Ferraz, J. Ferreira, N. Hamada, L. Juen, J. Nessimian, P. S. Pompeu & J. Zuanon, 2017. A multi-assemblage, multi-metric biological condition index for eastern Amazon streams. Ecological Indicators 78: 48–61.

    Google Scholar 

  • Chinnayakanahalli, K., C. Kroeber, R. A. Hill, D. G. Tarboton, J. R. Olson & C. P. Hawkins, 2006. The multi-watershed delineation tool: GIS software in support of regional watershed analyses. Utah State University, Logan.

    Google Scholar 

  • Cutler, D. R., T. C. Edwards Jr., K. H. Beard, A. Cutler, K. T. Hess, J. Gibson & J. J. Lawler, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.

    PubMed  Google Scholar 

  • Dolph, C. L., D. D. Huff, C. J. Chizinski & B. Vondracek, 2011. Implications of community concordance for assessing stream integrity at three nested spatial scales in Minnesota, USA. Freshwater Biology 56: 1652–1669.

    Google Scholar 

  • Drake, M. T. & R. D. Valley, 2005. Validation and application of a fish-based index of biotic integrity for small Central Minnesota lakes. North American Journal of Fisheries Management 25: 1095–1111.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Rivhard, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Ferreira, W. R., L. U. Hepp, R. Ligeiro, D. R. Macedo, R. M. Hughes, P. R. Kaufmann & M. Callisto, 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecological Indicators 72: 365–373.

    Google Scholar 

  • Firmiano, K. R., R. Ligeiro, D. R. Macedo, L. Juen, R. M. Hughes & M. Callisto, 2017. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators 74: 276–284.

    CAS  Google Scholar 

  • Gardner, T. & 86 coauthors, 2013. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society of Britain B 368(1609): 20120166.

  • Gioria, M., G. Bacaro & J. Feehan, 2011. Evaluating and interpreting cross-taxon congruence: potential pitfalls and solutions. Acta Oecologica 37: 187–194.

    Google Scholar 

  • Gregory, S. V., F. J. Swanson, W. A. McKee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. BioScience 41: 540–551.

    Google Scholar 

  • Gutiérrez-Cánovas, C., A. Millán, J. Velasco, I. P. Vaughan & S. J. Ormerod, 2013. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography 22: 796–805.

    Google Scholar 

  • Hastie, T., R. Tibshirani, J. Friedman & J. Franklin, 2005. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27: 83–85.

    Google Scholar 

  • Hawkins, C. P., Y. Cao & B. Roper, 2010a. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–1085.

    Google Scholar 

  • Hawkins, C. P., J. R. Olson & R. A. Hill, 2010b. The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society 29: 312–343.

    Google Scholar 

  • Hawkins, C. P., H. Mykrä, J. Oksanen & J. J. Vander Laan, 2014. Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Global Ecology and Biogeography 24: 483–494.

    Google Scholar 

  • Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators 10: 112–117.

    Google Scholar 

  • Heino, J., M. Grönroos, J. Ilmonen, T. Karhu, M. Niva & L. Paasivirta, 2012. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science 32: 142–154.

    Google Scholar 

  • Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. Verdonschot, 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51: 1757–1785.

    Google Scholar 

  • Hughes, B., 2014. Livestock grazing in the West: sacred cows at the public trough revisited. Fisheries 39: 339–339.

    Google Scholar 

  • Hughes, R. M. & D. V. Peck, 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27: 837–859.

    Google Scholar 

  • Hughes, S. J., J. M. Santos, M. T. Ferreira, R. Caraça & A. M. Mendes, 2009. Ecological assessment of an intermittent Mediterranean river using community structure and function: evaluating the role of different organism groups. Freshwater Biology 54: 2383–2400.

    Google Scholar 

  • Hughes, R. M., A. T. Herlihy, W. J. Gerth & Y. Pan, 2012. Estimating vertebrate, benthic macroinvertebrate, and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environmental Monitoring and Assessment 184: 3185–3198.

    CAS  PubMed  Google Scholar 

  • Jin, X., R. Zang, L. Cao, D. Chen & Z. Guo, 2008. Landscape pattern and fragmentation in Beitun of Irtysh River Basin, Xinjiang. Scientia Silvae Sinicae 44: 21–28.

    Google Scholar 

  • Johnson, R. K. & D. G. Angeler, 2014. Effects of agricultural land use on stream assemblages: taxon-specific responses of alpha and beta diversity. Ecological Indicators 45: 386–393.

    CAS  Google Scholar 

  • Johnson, R. K. & D. Hering, 2009. Response of taxonomic groups in streams to gradients in resource and habitat characteristics. Journal of Applied Ecology 46: 175–186.

    Google Scholar 

  • Johnson, R. K. & D. Hering, 2010. Spatial congruency of benthic diatom, invertebrate, macrophyte, and fish assemblages in European streams. Ecological Applications 20: 978–992.

    PubMed  Google Scholar 

  • Johnson, R. A. & D. W. Wichern, 1992. Applied Multivariate Statistical Analysis. Prentice-Hall Press, New York.

    Google Scholar 

  • Klemm, D. J., K. A. Blocksom, F. A. Fulk, A. T. Herlihy, R. M. Hughes, P. R. Kaufmann, D. V. Peck, J. L. Stoddard, W. T. Thoeny & M. B. Griffith, 2003. Development and evaluation of a macroinvertebrate biotic integrity index (MBII) for regionally assessing Mid-Atlantic Highlands streams. Environmental Management 31: 656–669.

    PubMed  Google Scholar 

  • Kondolf, G. M., 1997. Application of the pebble count: reflections on purpose, method, and variants. Transactions of the American Fisheries Society 33: 79–87.

    Google Scholar 

  • Leitão, R. P., J. Zuanon, D. Mouillot, C. G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. de Paula, S. F. B. Ferraz & T. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    PubMed  PubMed Central  Google Scholar 

  • Lewis, B. R., L. Juttner, B. Reynolds & S. J. Ormerod, 2007. Comparative assessment of stream acidity using diatoms and macroinvertebrates: implications for river management and conservation. Aquatic Conservation 17: 502–519.

    Google Scholar 

  • Li, D., 1999. Hydrology characteristics in Irtysh river basin. Journal of China Hydrology 3: 50–54.

    Google Scholar 

  • Li, S. & J. Lei, 2002. The pattern and change of the ecosystems in the Ergis River watershed. Arid Zone Research 19: 56–61.

    Google Scholar 

  • Li, J., Z. Xia, L. Guo & X. Wang, 2008. Characteristics and trends of change in the climate of the Irtysh River Basin. Journal of Hohai University (Natural Sciences) 36: 311–315.

    Google Scholar 

  • Li, J., Q. Zhou, C. Xie, J. Wang & L. Wei, 2014. Studies on the community structure of periphyton in the Irtysh River of Xinjiang Uygur autonomous region. Acta Hydrobiologica Sinica 38: 1033–1039.

    CAS  Google Scholar 

  • Liaw, A. & M. Wiener, 2002. Classification and regression by randomForest. R news 2: 18–22.

    Google Scholar 

  • Ligeiro, R., A. S. Melo & M. Callisto, 2010. Spatial scale and the diversity of macroinvertebrates in a neotropical catchment. Freshwater Biology 55: 424–435.

    Google Scholar 

  • Linkov, I., D. Loney, S. Cormier, F. K. Satterstrom & T. Bridges, 2009. Weight-of-evidence evaluation in environmental assessment: review of qualitative and quantitative approaches. Science of the Total Environment 407: 5199–5205.

    CAS  PubMed  Google Scholar 

  • Macedo, D. R., R. M. Hughes, R. Ligeiro, W. R. Ferreira, M. Castro, N. T. Junqueira, D. R. O. Silva, K. R. Firmiano, P. R. Kaufmann, P. S. Pompeu & M. Callisto, 2014. The relative influence of multiple spatial scale environmental predictors on fish and macroinvertebrate assemblage richness in cerrado ecoregion streams, Brazil. Landscape Ecology 29: 1001–1016.

    Google Scholar 

  • Magee, T. K., K. A. Blocksom & M. S. Fennessy. In Press. A national-scale vegetation multimetric index (VMMI) as an indicator of wetland condition across the conterminous United States. Environmental Monitoring and Assessment.

  • Maloney, K. O., P. Munguia & R. M. Mitchell, 2011. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. Journal of the North American Benthological Society 30: 284–295.

    Google Scholar 

  • Marzin, A., V. Archaimbault, J. Belliard, C. Chauvin, F. Delmas & D. Pont, 2012a. Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators 23: 56–65.

    CAS  Google Scholar 

  • Marzin, A., P. F. M. Verdonschot & D. Pont, 2012b. The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704: 375–388.

    Google Scholar 

  • Mendes, T., A. R. Calapez, C. L. Elias, S. F. Almeida & M. J. Feio, 2014. Comparing alternatives for combining invertebrate and diatom assessment in stream quality classification. Marine and Freshwater Research 65: 612–623.

    Google Scholar 

  • MEPAC (Ministry of Environmental Protection of the People’s Republic of China). 2002. Standard methods for the analysis of water and wastewater (4th ed.). Water and Wastewater Monitoring Methods, 4th ed. Chinese Environmental Science Publishing House, Beijing.

  • Morse, J. C., L. Yang & L. Tian, 1994. Aquatic insects of China useful for monitoring water quality. HoHai University Press, Nanjing.

    Google Scholar 

  • Oberdorff, T., D. Pont, B. Hugueny & J. P. Porcher, 2002. Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology 47: 1720–1734.

    Google Scholar 

  • O’Connor, R. J., T. E. Walls & R. M. Hughes, 2000. Using multiple taxonomic groups to index the ecological condition of lakes. Environmental Monitoring and Assessment 61: 207–229.

    Google Scholar 

  • Ode, P. R., A. C. Rehn & J. T. May, 2005. A quantitative tool for assessing the integrity of southern coastal California streams. Environmental Management 35: 493–504.

    PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2014. Vegan: community ecology package. R package version 2.0-10. http://vegan.r-forge.r-project.org.

  • Olsen, A. R. & D. V. Peck, 2008. Survey design and extent estimates for the wadeable streams assessment. Journal of the North American Benthological Society 27: 822–836.

    Google Scholar 

  • Olson, J. R. & C. P. Hawkins, 2013. Developing site-specific nutrient criteria from empirical models. Freshwater Science 32: 719–740.

    Google Scholar 

  • Olson, J. R. & C. P. Hawkins, 2017. Effects of total dissolved solids on growth and mortality predict distributions of stream macroinvertebrates. Freshwater Biology 62: 779–791.

    CAS  Google Scholar 

  • Paavola, R., T. Muotka, R. Virtanen, J. Heino, D. Jackson & A. Mäki-Petäys, 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications 16: 368–379.

    PubMed  Google Scholar 

  • Pan, Y., A. Herlihy, P. R. Kaufmann, J. Wigington, J. Van Sickle & T. Moser, 2004. Linkages among land-use, water quality, physical habitat conditions and lotic diatom assemblages: a multi-spatial scale assessment. Hydrobiologia 515: 59–73.

    Google Scholar 

  • Pan, Y., R. M. Hughes, A. T. Herlihy & P. R. Kaufmann, 2012. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia 684: 241–260.

    CAS  Google Scholar 

  • Passy, S. I. & F. G. Blanchet, 2007. Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Diversity and Distributions 13: 670–679.

    Google Scholar 

  • Paulsen, S. G., A. Mayio, D. V. Peck, J. L. Stoddard, E. Tarquinio, S. M. Holdsworth, J. Van Sickle, L. L. Yuan, C. P. Hawkins, A. T. Herlihy, P. R. Kaufmann, M. T. Barbour, D. P. Larsen & A. R. Olsen, 2008. Condition of stream ecosystems in the US: an overview of the first national assessment. Journal of the North American Benthological Society 27: 812–821.

    Google Scholar 

  • Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family-and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.

    Google Scholar 

  • R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Richards, C., R. Haro, L. Johnson & G. Host, 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwwater Biology 37: 219–230.

    Google Scholar 

  • Rooney, R. C. & E. T. Azeria, 2015. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. Journal of Biogeography 42: 439–451.

    Google Scholar 

  • Ruaro, R. & É. A. Gubiani, 2013. A scientometric assessment of 30 years of the Index of Biotic Integrity in aquatic ecosystems: applications and main flaws. Ecological Indicators 29: 105–110.

    Google Scholar 

  • Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erös, 2011. The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. Ecology of Freshwater Fish 20: 251–262.

    Google Scholar 

  • Schinegger, R., M. Palt, P. Segurado & S. Schmutz, 2016. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Science of the Total Environment 573: 1079–1088.

    CAS  PubMed  Google Scholar 

  • Sheng, J. X., X. Chen, L. Yang, J. Wang & B. Li, 2010. Land use/land cover in Irtysh River-Zaysan Lake Basin over the past 20 years. Arid Land Geography 33: 189–195.

    Google Scholar 

  • Silva, D., A. T. Herlihy, R. M. Hughes, D. R. Macedo & M. Callisto, 2018. Assessing the extent and relative risk of aquatic stressors on stream macroinvertebrate assemblages in the neotropical savanna. Science of the Total Environment 633: 179–188.

    CAS  PubMed  Google Scholar 

  • Song, M. Y., F. Leprieur, A. Thomas, S. Lek-Ang, T. S. Chon & S. Lek, 2009. Impact of agricultural land use on aquatic insect assemblages in the Garonne river catchment (SW France). Aquatic Ecology 43: 999–1009.

    CAS  Google Scholar 

  • Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.

    PubMed  Google Scholar 

  • Stoddard, J. L., A. T. Herlihy, D. V. Peck, R. M. Hughes, T. R. Whittier & E. Tarquinio, 2008. A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society 27: 878–891.

    Google Scholar 

  • Tang, T., R. J. Stevenson & D. M. Infante, 2016. Accounting for regional variation in both natural environment and human disturbance to improve performance of multimetric indices of lotic benthic diatoms. Science of the Total Environment 586: 1124–1134.

    Google Scholar 

  • Vander Laan, J. J. & C. P. Hawkins, 2014. Enhancing the performance and interpretation of freshwater biological indices: an application in arid zone streams. Ecological Indicators 36: 470–482.

    Google Scholar 

  • Vander Laan, J. J., C. P. Hawkins, J. R. Olson & R. A. Hill, 2013. Linking land use, in-stream stressors, and biological condition to infer causes of regional ecological impairment in streams. Freshwater Science 32: 801–820.

    Google Scholar 

  • Voss, K. A., A. Pohlman, S. Viswanathan, D. Gibson & J. Purohit, 2012. A study of the effect of physical and chemical stressors on biological integrity within the San Diego hydrologic region. Environmental Monitoring and Assessment 184: 1603–1616.

    CAS  PubMed  Google Scholar 

  • Wang, H., 1991. Fauna of Zhejiang: Mollusks. Zhejiang Science and Technology Publishing House, Zhejiang, Hangzhou.

    Google Scholar 

  • Wang, L., J. Lyons, P. Rasmussen, P. Seelbach, T. Simon, M. Wiley, P. Danehl, E. Baker, S. Niemela & P. M. Stewart, 2003. Watershed, reach, and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 60: 491–505.

    Google Scholar 

  • Wang, L., D. M. Robertson & P. J. Garrison, 2007. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: implication to nutrient criteria development. Environmental Management 39: 194–212.

    PubMed  Google Scholar 

  • Wang, B., D. Liu, S. Liu, Y. Zhang, D. Lu & L. Wang, 2012. Impacts of urbanization on stream habitats and macroinvertebrate communities in the tributaries of Qiangtang River, China. Hydrobiologia 680: 39–51.

    CAS  Google Scholar 

  • Wang, J., Q. Zhou, C. Xie, J. Li & L. Wei, 2014. The community structure of macrozoobenthos and biological assessment of water quality in the Irtyrsh River of Xinjian. Chinese Journal of Ecology 33: 2420–2428.

    Google Scholar 

  • Ward, J. & L. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–820.

    Google Scholar 

  • Whittier, T. R., R. M. Hughes, J. L. Stoddard, G. A. Lomnicky, D. V. Peck & A. T. Herlihy, 2007. A structured approach for developing indices of biotic integrity: three examples from streams and rivers in the western USA. Transactions of the American Fisheries Society 136: 718–735.

    Google Scholar 

  • Wolman, M. G., 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35: 951–956.

    Google Scholar 

  • Wu, N., Q. Cai & N. Fohrer, 2012. Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecological Indicators 18: 108–117.

    CAS  Google Scholar 

  • Yates, A. G. & R. C. Bailey, 2010. Covarying patterns of macroinvertebrate and fish assemblages along natural and human activity gradients: implications for bioassessment. Hydrobiologia 637: 87–100.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 51509159) and the National Grand Science and Technology Special Project of Water Pollution Control and Improvement (No. 2014ZX07204-006) for funding, and colleagues at the Laboratory of Aquatic Insects and Stream Ecology of Nanjing Agricultural University for assistance with macroinvertebrate sampling and processing, and for water chemistry analyses. The authors thank the editors and all anonymous referees for their valuable suggestions that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuwen Chen or Beixin Wang.

Additional information

Handling editor: Zhengwen Liu

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5784 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Sun, D., Rajper, A.R. et al. Concordance in biological condition and biodiversity between diatom and macroinvertebrate assemblages in Chinese arid-zone streams. Hydrobiologia 829, 245–263 (2019). https://doi.org/10.1007/s10750-018-3836-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3836-0

Keywords

  • MMI
  • IBI
  • Diversity
  • Natural variability
  • Stressors
  • Random forest