Skip to main content
Log in

Extreme drought periods can change spatial effects on periphytic ostracod metacommunities in river-floodplain ecosystems

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hydrological regimes are seasonally variable in river-floodplain ecosystems. Thus, since in these environments the local and regional factors change at different temporal scales, factors structuring metacommunities might also differ over time. However, temporal dynamics of metacommunities have rarely been assessed. Here, we investigated the influence of environmental and spatial factors over time on the metacommunity structuring of periphytic ostracods in the river-floodplain system of the Upper Paraná River (Brazil). The spatial factors turned out to be more important than environmental factors, and differences in the percentage of explanation of the factors structuring ostracod metacommunities over time were significant, mainly during extreme drought period. Our results showed that the high spatial influence might be related to the low connectivity amongst environments during such extreme drought period, which can increase dispersal limitation, and consequently can increase the turnover of ostracod species throughout the region, leading to a higher beta-diversity of ostracod metacommunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish biology and Fisheries 14: 11–19.

    Article  Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.

    Article  CAS  Google Scholar 

  • Aguilar-Alberola, J. A. & F. Mesquita-Joanes, 2014. Breaking the temperature-size rule: thermal effects on growth, development and fecundity of a crustacean from temporary waters. Journal of Thermal Biology 42: 15–24.

    Article  Google Scholar 

  • Alahuhta, J., L. B. Johnson, J. Olker & J. Heino, 2014. Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecological Complexity 20: 61–68.

    Article  Google Scholar 

  • Algarte, V. M., L. Rodrigues, V. L. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722: 279–290.

    Article  Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  Google Scholar 

  • Astorga, A., R. Death, F. Death, R. Paavola, M. Chakraborty & T. Muotka, 2014. Habitat heterogeneity drives the geographical distribution of beta diversity the case of New Zeland stream invertebrates. Ecology and Evolution 4: 2693–2702.

    Article  Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223–1232.

    Article  Google Scholar 

  • Baselga, A., D. Orne, S. Villeger, J. Bortoli & F. Leprieur, 2018. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.0.

  • Bellier, E., V. Grøtan, S. Engen, A. K. Schartau, I. Herfindal & A. G. Finstad, 2014. Distance decay of similarity, effects of environmental noise and ecological heterogeneity among species in the spatio-temporal dynamics of a dispersal-limited community. Ecography 36: 1–11.

    Google Scholar 

  • Berri, G. J., M. A. Ghietto & N. O. García, 2002. The influence of ENSO in the flows of the upper Paraná River of South America over the past 100 years. Journal of Hydrometeorology 3: 57–65.

    Article  Google Scholar 

  • Bini, L. M., V. L. Landeiro, A. A. Padial, T. Siqueira & J. Heino, 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95: 1569–1578.

    Article  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Bocard, 2008a. Modelling directional spatial processes in ecological data. Ecological Modelling 215: 325–336.

    Article  Google Scholar 

  • Blanchet, G., P. Legendre & D. Borcard, 2008b. Forward selection of spatial explanatory variables. Ecology 89: 2623–2632.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Bortolini, J. C., S. Train & L. C. Rodrigues, 2016. Extreme hydrological periods: effects on phytoplankton variability and persistence in a subtropical floodplain. Hydrobiologia 763: 223–236.

    Article  Google Scholar 

  • Brochet, A. L., M. Gauthier-Clerc, M. Guillemain, H. Fritz, A. Waterkeyn, Á. Baltanás & A. J. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.

    Article  Google Scholar 

  • Campos, R., E. O. Conceição, M. B. O. Pinto, A. P. S. Bertocin, J. Higuti & K. Martens, 2017. Evaluation of quantitative sampling methods in pleuston: an example from ostracod communities. Limnologica 63: 36–41.

    Article  Google Scholar 

  • Campos, R., F. M. Lansac-Tôha, E. O. Conceição, K. Martens & J. Higuti, 2018. Factors affecting the metacommunity structure of periphytic ostracods (Crustacea, Ostracoda): a deconstruction approach based on biological traits. Aquatic Sciences 80: 1–16.

    Article  Google Scholar 

  • Castillo-Escrivà, A., J. Poquet & F. Mesquita-Joanes, 2015. Effects of environmental and spatial variables on lotic ostracod metacommunity structure in the Iberian Peninsula. Inland Waters 5: 283–294.

    Article  Google Scholar 

  • Castillo-Escrivà, A., J. Rueda, L. Zamora, R. Hernández, M. Del Moral & F. Mesquita-Joanes, 2016a. The role of watercourse versus overland dispersal and niche effects on ostracod distribution in Mediterranean streams (eastern Iberian Peninsula). Acta Oecologica 73: 1–9.

    Article  Google Scholar 

  • Castillo-Escrivà, A., L. Valls, C. Rochera, A. Camacho & F. Mesquita-Joanes, 2016b. Disentangling environmental, spatial, and historical effects on ostracod communities in shallow lakes. Hydrobiologia 789: 1–12.

    Google Scholar 

  • Castillo-Escrivà, A., L. Valls, C. Rochera, A. Camacho & F. Mesquita-Joanes, 2016c. Spatial and environmental analysis of an ostracod metacommunity from endorheic lakes. Aquatic Sciences 78: 707–716.

    Article  Google Scholar 

  • Castillo-Escrivà, A., L. Valls, C. Rochera, A. Camacho & F. Mesquita-Joanes, 2017. Metacommunity dynamics of Ostracoda in temporary lakes: overall strong niche effects except at the onset of the flooding period. Limnologica 62: 104–110.

    Article  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences 104: 17430–17434.

    Article  CAS  Google Scholar 

  • Conceição, E. O., J. Higuti, R. Campos & K. Martens, 2018. Effects of flood pulses on persistence and variability of pleuston communities in a tropical floodplain lake. Hydrobiologia 807: 175–188.

    Article  Google Scholar 

  • De Bie, T., L. Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits deter- mining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  Google Scholar 

  • Dray, S., D. Bauman, G. Blanchet, D. Bocard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi & H. H. Wagner, 2018. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-2.

  • Driver, L. J. & D. J. Hoeinghaus, 2016. Spatiotemporal dynamics of intermittent stream fish metacommunities in response to prolonged drought and reconnectivity. Marine and Freshwater Research 67: 1667–1679.

    Article  Google Scholar 

  • Fernandes, I. M., R. Henriques-Silva, J. Penha, J. Zuanon & P. R. Peres-Neto, 2014. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37: 464–475.

    Google Scholar 

  • Grimm, A. M. & R. G. Tedeschi, 2009. ENSO and extreme rainfall events in South America. Journal of Climate 22: 1589–1609.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Higuti, J. & K. Martens, 2012a. Description of a new genus and species of Candonopsini (Crustacea, Ostracoda, Candoninae) from the alluvial valley of the Upper Paraná River (Brazil, South America). European Journal of Taxonomy 33: 1–31.

    Google Scholar 

  • Higuti, J. & K. Martens, 2012b. On a new cypridopsine genus (Crustacea, Ostracoda, Cyprididae) from the Upper Paraná River Floodplain (Brazil). Zootaxa 38: 23–38.

    Google Scholar 

  • Higuti, J. & K. Martens, 2014. Five new species of Candoninae (Crustacea, Ostracoda) from the alluvial valley of the Upper Paraná River (Brazil, South America). European Journal of Taxonomy 106: 1–36.

    Google Scholar 

  • Higuti, J. & K. Martens, 2016. Invasive South American floating plants are a successful substrate for native Central African pleuston. Biological Invasions 18: 1191–1201.

    Article  Google Scholar 

  • Higuti, J., L. F. M. Velho, F. A. Lansac-Tôha & K. Martens, 2007. Pleuston communities are buffered from regional flood River pulses: the example of ostracods in the Paraná River floodplain, Brazil. Freshwater Biology 52: 1930–1943.

    Article  Google Scholar 

  • Higuti, J., I. Schön, L. Audenaert & K. Martens, 2013. On the Strandesia obtusata/elliptica lineage (Ostracoda, Cyprididae) in the alluvial valley of the upper Paraná River (Brazil), with the description of three new species. Crustaceana 86: 182–211.

    Article  Google Scholar 

  • Higuti, J., E. O. Conceição, R. Campos, V. G. Ferreira, J. Rosa, M. B. O. Pinto & K. Martens, 2017. Periphytic community structure of Ostracoda (Crustacea) in the river-floodplain system of the Upper Paraná River. Acta Limnologica Brasiliensia 29: e120.

    Article  Google Scholar 

  • Junk, W. J. & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Landeiro, V., W. E. Magnusson, A. S. Melo, H. M. V. Espírito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56: 1184–1191.

    Article  Google Scholar 

  • Lansac-Tôha, F. M., B. R. Meira, B. T. Segovia, F. A. Lansac-Tôha & L. F. M. Velho, 2016. Hydrological connectivity determining metacommunity structure of planktonic heterotrophic flagellates. Hydrobiologia 781: 81–94.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Liberto, R., F. Mesquita-Joanes & I. César, 2012. Dynamics of pleustonic ostracod populations in small ponds on the Island of Martín García (Rio de la Plata, Argentina). Hydrobiologia 688: 47–61.

    Article  CAS  Google Scholar 

  • Lopes, P. M., L. M. Bini, S. A. J. Declerck, V. F. Farjalla, L. C. G. Vieira, C. C. Bonecker, F. A. Lansac-Toha, F. A. Esteves & R. L. Bozelli, 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 9: e109581.

    Article  Google Scholar 

  • Martens, K. & F. Behen, 1994. A Checklist of the Recent Non-Marine Ostracods (Crustacea, Ostracoda) from the Inland Waters of South America and Adjacent Islands. Travaux Scientifiques du Musée National d’Histoire Naturelle de Luxembourg, Luxembourg 22: 1–81.

    Google Scholar 

  • Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. In Schwoerber, J. & P. Zwick (eds), Sußwasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Heidelberg: 522.

    Google Scholar 

  • Nabout, C., T. Siqueira, L. M. Bini & I. D. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 1–7.

    Article  Google Scholar 

  • Nagorskaya, L. & D. Keyser, 2005. Habitat diversity and ostracod distribution patterns in Belarus. Hydrobiologia 538: 167–178.

    Article  Google Scholar 

  • Oberdorff, T., B. Hugueny & T. Vigneron, 2001. Is assemblage variability related to environmental variability? An answer for riverine fish. Oikos 93: 419–428.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2017. vegan: Community Ecology Package. R package version 2.4-1, https://cran.r-project.org/package=vegan. Accessed 10 Nov. 2017.

  • O’Malley, M. A., 2007. The nineteenth century roots of ‘everything is everywhere’. Nature Reviews Microbiology 5: 647–651.

    Article  Google Scholar 

  • Padial, A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability aetermines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9: 1–8.

    Article  Google Scholar 

  • Pereira, L. C., F. A. Lansac-Tôha, K. Martens & J. Higuti, 2017. Biodiversity of ostracod communities (Crustacea, Ostracoda) in a tropical floodplain. Inland Waters 7: 323–332.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  Google Scholar 

  • R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org. Accessed 10 Nov. 2017

  • Rocha, M. P., J. Heino, L. F. M. Velho, F. M. Lansac-Tôha & F. A. Lansac-Tôha, 2017. Fine spatial grain, large spatial extent and biogeography of macrophyte-associated cladoceran communities across Neotropical floodplains. Freshwater Biology 62: 559–569.

    Article  Google Scholar 

  • Rosati, M., G. Rossetti, M. Cantonati, V. Pieri, J. R. Roca & F. Mesquita-Joanes, 2017. Are aquatic assemblages from small water bodies more stochastic in dryer climates?An analysis of ostracod spring metacommunities. Hydrobiologia 793: 199–212.

    Article  Google Scholar 

  • Rossetti, G. & K. Martens, 1998. Taxonomic revision of the Recent and Holocene representatives of the family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie 68: 55–110.

    Google Scholar 

  • Simões, N. R., F. A. Lansac-Tôha & C. C. Bonecker, 2013. Drought disturbances increase temporal variability of zooplankton community structure in floodplains. International Review of Hydrobiology 98: 24–33.

    Article  Google Scholar 

  • Simpson, G. L., 2017. Permute: Functions for Generating Restricted Permutations of Data. R package version 0.9-4. https://cran.r-project.org/package=permute. Accessed 10 Nov. 2017.

  • Sokal, R. R. & S. L. Oden, 1978. Spatial autocorrelation in biology. 1. Methodology. Biological Journal of the Linnean Society 10: 199–228.

    Article  Google Scholar 

  • Souffreau, C., K. Van der Gucht, I. Gremberghe, S. Kosten, G. Lacerot, L. M. Lobão, V. L. M. Huszar, F. Roland, E. Jeppesen, W. Vyverman & L. De Meester, 2015. Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a > 6000 km latitudinal gradient in South America. Environmental Microbiology 17: 2336–2351.

    Article  Google Scholar 

  • Souza Filho, E. E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69: 707–716.

    Article  CAS  Google Scholar 

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. C. Roberto & R. R. A. Rocha, 2004. Limnological characterization of the aquatic environments and the influence of hydrometric levels. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and Its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 75–102.

    Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman & L. Brendonck, 2010. Species sorting in space and time—the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29: 1267–1278.

    Article  Google Scholar 

  • Wojciechowski, J., J. Heino, L. M. Bini & A. A. Padial, 2017. The strength of species sorting of phytoplankton communities is temporally variable in subtropical reservoirs. Hydrobiologia 800: 31–43.

    Article  Google Scholar 

  • Zhai, M., O. Novácek, D. Výravský, V. Syrovátka, J. Bojková & J. Helesic, 2015. Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia 745: 225–239.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Technology (MCT)/National Council for Scientific and Technological Development (CNPq)/Fundacão Araucária for financial support to the present project (Process: 478629/2012-5) and to the Long–Term Ecological Research - LTER. We thank the Centre of Research in Limnology, Ichthyology and Aquaculture (Nupélia) and the Graduate Program in Ecology of Inland Water Ecosystems (PEA) of the State University of Maringá (UEM) and the Academic Excellency Program (Proex)/Coordination for the Improvement of Higher Education Personnel (CAPES), USACUCAR, CORIPA, ICMBio for logistic support. We also thank André A. Padial, for the statistical support and Jaime Luiz Lopes Pereira (Nupélia), for the production of the map. R.C. and E.O.C would like to thank CAPES for granting their scholarships. Two anonymous referees suggested important improvements. The State University of Maringá (UEM, Maringá) and the Royal Belgian Institute of Natural Sciences (RBINS, Brussels) have a bilateral Memorandum of Understanding regarding collaborative Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro de Campos.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2018_3825_MOESM1_ESM.tif

Supplementary material 1 (TIFF 2721 kb). Fig. S1 Mean values, standard deviation and standard error of the environmental heterogeneity amongst the sampling periods (A) and between the lotic and lentic environments (B)

10750_2018_3825_MOESM2_ESM.docx

Supplementary material 2 (DOCX 22 kb). Table S1 Limnological characteristics (mean and standard deviation), species of macrophytes and number of samples of each sampling site in the river-floodplain system of the Upper Paraná River. WT = water temperature, EC = electrical conductivity, DO = dissolved oxygen, Ec = Eichhornia crassipes, Ea = Eichhornia azurea. (*) = values < 0.01

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos, R., Conceição, E.O., Martens, K. et al. Extreme drought periods can change spatial effects on periphytic ostracod metacommunities in river-floodplain ecosystems. Hydrobiologia 828, 369–381 (2019). https://doi.org/10.1007/s10750-018-3825-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3825-3

Keywords

Navigation