, Volume 828, Issue 1, pp 327–337 | Cite as

Exploring the suitability of bromeliads as aquatic breeding habitats for cacao pollinators

  • Mathil VandrommeEmail author
  • Hendrik Trekels
  • Norvin Sepúlveda Ruiz
  • Eduardo Somarriba
  • Bram Vanschoenwinkel
Primary Research Paper


Bromeliads are common plants in the Neotropics. Being epiphytic, they are often incorrectly considered as parasites and removed from agroforestry systems. However, their water-filled leaf axils provide habitats for a diverse group of aquatic organisms, potentially including cacao pollinating dipterans which could be beneficial to local farmers. Thus far, it is unclear how frequently and abundantly potential pollinators occur in bromeliads in cacao plantations. Therefore, we investigated the aquatic fauna in different types of bromeliads in Nicaraguan cacao agroforestry systems. Our main goal was to study the impact of bromeliad morphology and vertical position on aquatic biodiversity with particular attention for larvae of presumed cacao pollinators. Aquatic biodiversity was higher in larger bromeliads and in bromeliads positioned closer to the ground. Particularly invertebrates without flying life stages were deficient in elevated bromeliads suggesting dispersal limitation. Potential cacao pollinators occurred in 66% of the bromeliads and were most abundant in bromeliads with larger tanks that were located higher in the canopy rather than on the plantation floor. We conclude that larvae of cacao pollinators can be common and relatively abundant inhabitants of tank bromeliads in cacao trees, and it is likely that preserving these habitats could boost local pollinator abundances.


Aquatic invertebrates Biodiversity Cacao plantations Cecidomyiidae Ceratopogonidae Phytotelmata 



We thank Marvin Palacios Montes, Catherine Turner and Justine Vansynghel for the logistical support. Our gratitude goes out to Miguel Peralta Riviera, Isabel Mongares Gutierrez, Serapio Aguilar Huerta and Anaíris Martinez who allowed us to work in their cacao plantations. This work was supported by the Flemish Interuniversity Council - University Development Cooperation (Grant Number NDOC2015PR005) and performed under the necessary permits obtained at the Ministerio del Ambiente y Recursos Naturales, Medio Ambiente Nicaragua (research permit DGPN/DB-IC-007-2016; export permit DGPN/DB-013-2016).

Compliance with the standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2018_3822_MOESM1_ESM.pdf (175 kb)
Supplementary material 1 (PDF 175 kb)
10750_2018_3822_MOESM2_ESM.pdf (191 kb)
Supplementary material 2 (PDF 191 kb)
10750_2018_3822_MOESM3_ESM.pdf (195 kb)
Supplementary material 3 (PDF 195 kb)
10750_2018_3822_MOESM4_ESM.pdf (318 kb)
Supplementary material 4 (PDF 317 kb)


  1. Borkent, A. & G. R. Spinelli, 2007. Aquatic Biodiversity in Latin America: Neotropical Ceratopogonidae (Diptera: Insecta), Vol. 4. Pensoft, Sofia.Google Scholar
  2. Brouard, O., R. Céréghino, B. Corbara, C. Leroy, L. Pelozuelo, A. Dejean & J. F. Carrias, 2012. Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology 57: 815–823.CrossRefGoogle Scholar
  3. Brown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley & M. A. Zumbado, 2009. Manual of Central American Diptera. NRC Research Press, Ottawa.Google Scholar
  4. Carr, M. K. V. & G. Lockwood, 2011. The water relations and irrigation requirements of cocoa (Theobroma Cacao L.): a review. Experimental Agriculture 47: 653–676.CrossRefGoogle Scholar
  5. Céréghino, R., C. Leroy, A. Dejean & B. Corbara, 2010. Ants mediate the structure of phytotelm communities in an ant-garden bromeliad. Ecology 91: 1549–1556.CrossRefGoogle Scholar
  6. Clarke, C. M. & R. L. Kitching, 1993. The metazoan food webs from six Bornean Nepenthes species. Ecological Entomology 18: 7–16.CrossRefGoogle Scholar
  7. Dézerald, O., C. Leroy, B. Corbara, J. F. Carrias, L. Pélozuelo, A. Dejean & R. Céréghino, 2013. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems. PLoS ONE 8: e71735.CrossRefGoogle Scholar
  8. Dézerald, O., S. Talaga, C. Leroy, J. F. Carrias, B. Corbara, A. Dejean & R. Céréghino, 2014. Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia 723: 77–86.CrossRefGoogle Scholar
  9. Fish, D. & S. de J. Soria, 1978. Water-holding plants (phytotelmata) as larval habitats for ceratopogonid pollinators of cacao in Bahia, Brazil. Revista Theobroma (Brasil) 8: 133–146.Google Scholar
  10. Forbes, S. J. & T. D. Northfield, 2017. Increased pollinator habitat enhances cacao fruit set and predator conservation. Ecological Applications 27: 887–899.CrossRefGoogle Scholar
  11. Frank, J. H. & L. P. Lounibos, 2009. Insects and allies associated with bromeliads: a review. Terrestrial Arthropod Reviews 1: 125–153.CrossRefGoogle Scholar
  12. Givnish, T. J., M. H. J. Barfuss, B. Van Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, R. S. Jabaily, D. M. Crayn, J. A. C. Smith, K. Winter, G. K. Brown, T. M. Evans, B. K. Holst, H. Luther, W. Till, G. Zizka, P. E. Berry & K. J. Sytsma, 2014. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molecular Phylogenetics and Evolution 71: 55–78.CrossRefGoogle Scholar
  13. Glendinning, D. R., 1972. Natural pollination of cocoa. New Phytologist 71: 719–729.CrossRefGoogle Scholar
  14. Groeneveld, J. H., T. Tscharntke, G. Moser & Y. Clough, 2010. Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspectives in Plant Ecology, Evolution and Systematics 12: 183–191.CrossRefGoogle Scholar
  15. Hammill, E., P. Corvalan & D. S. Srivastava, 2014. Bromeliad-associated reductions in host herbivory: do epiphytic bromeliads act as commensalists or mutualists? Biotropica 46: 78–82.CrossRefGoogle Scholar
  16. Hammill, E., T. B. Atwood & D. S. Srivastava, 2015. Predation threat alters composition and functioning of bromeliad ecosystems. Ecosystems 18: 857–866.CrossRefGoogle Scholar
  17. Horváth, Z., C. F. Vad & R. Ptacnik, 2016. Wind dispersal results in a gradient of dispersal limitation and environmental match among discrete aquatic habitats. Ecography 39: 726–732.CrossRefGoogle Scholar
  18. Jabiol, J., B. Corbara, A. Dejean & R. Céréghino, 2009. Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. Forest Ecology and Management 257: 351–360.CrossRefGoogle Scholar
  19. Jocque, M. & R. Field, 2014. Aquatic invertebrate communities in tank bromeliads: how well do classic ecological patterns apply? Hydrobiologia 730: 153–166.CrossRefGoogle Scholar
  20. Jocque, M., F. Fiers, M. Romero & K. Martens, 2013. Crustacea in phytotelmata: a global overview. Journal of Crustacean Biology 33: 451–460.CrossRefGoogle Scholar
  21. Kitching, R., 2000. Food Webs and Container Habitats. The Natural History and Ecology of Phytotelmata. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
  22. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  23. Lopez, L. C. S., B. Filizola, I. Deiss & R. I. Rios, 2005. Phoretic behaviour of bromeliad annelids (Dero) and ostracods (Elpidium) using frogs and lizards as dispersal vectors. Hydrobiologia 549: 15–22.CrossRefGoogle Scholar
  24. Marino, N. A. C., D. S. Srivastava & V. F. Farjalla, 2013. Aquatic macroinvertebrate community composition in tank-bromeliads is determined by bromeliad species and its constrained characteristics. Insect Conservation and Diversity 6: 372–380.CrossRefGoogle Scholar
  25. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque.Google Scholar
  26. Petermann, J. S., V. F. Farjalla, M. Jocque, P. Kratina, A. A. M. Macdonald, N. A. C. Marino, P. M. De Omena, G. C. O. Piccoli, B. A. Richardson, M. J. Richardson, G. Q. Romero, M. Videla & D. S. Srivastava, 2015. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96: 428–439.CrossRefGoogle Scholar
  27. Privat, F., 1979. Les Bromeliacées, Lieu de Developpement de Quelques Insectes Pollinisateurs des Fleurs de Cacao. Brenesia 16: 197–212.Google Scholar
  28. Srivastava, D. S., M. K. Trzcinski, B. A. Richardson & B. Gilbert, 2008. Why are predators more sensitive to habitat size than their prey? Insights from Bromeliad insect food webs. The American Naturalist 172: 761–771.CrossRefGoogle Scholar
  29. Steffan, W. A. & N. L. Evenhuis, 1981. Biology of Toxorhynchites. Annual Review of Entomology 26: 159–181.CrossRefGoogle Scholar
  30. Toledo-Hernández, M., T. C. Wanger & T. Tscharntke, 2017. Neglected pollinators: can enhanced pollination services improve cocoa yields? A review. Agriculture, Ecosystems & Environment Elsevier 247: 137–148.CrossRefGoogle Scholar
  31. Trognitz, B., X. Scheldeman, K. Hansel-Hohl, A. Kuant, H. Grebe & M. Hermann, 2011. Genetic population structure of cacao plantings within a young production area in Nicaragua. PLoS ONE 6: e16056.CrossRefGoogle Scholar
  32. Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31: 567–577.CrossRefGoogle Scholar
  33. Wambold, L. J., D. O. Chan, T. W. Therriault & J. Kolasa, 2011. Abiotic factors controlling species richness, diversity, and abundance in the Bromeliad Hohenbergia Polycephala (Bromeliaceae). Ecotropica 17: 91–101.Google Scholar
  34. Winder, J. A., 1978. Cocoa flower diptera; their identity, pollinating activity and breeding sites. PANS 24: 5–18.CrossRefGoogle Scholar
  35. Young, A. M., 1985. Studies of cecidomyiid midges (Diptera: Cecidomyiidae) as cocoa pollinators (Theobroma cacao L.) in Central America. Proceedings of the Entomological Society of Washington 87: 49–79.Google Scholar
  36. Young, A. M., 2007. The Chocolate Tree. A Natural History of Cacao, Revised and Expanded Edition. University Press of Florida, Gainesville.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mathil Vandromme
    • 1
    Email author
  • Hendrik Trekels
    • 1
  • Norvin Sepúlveda Ruiz
    • 2
  • Eduardo Somarriba
    • 2
  • Bram Vanschoenwinkel
    • 1
  1. 1.Community Ecology Lab, Department of BiologyVrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)CartagoCosta Rica

Personalised recommendations