Abstract
The digestive capacity of jellyfish has barely been studied because of the complexity of their life stage body-forms and sizes. To assess the digestive capacity in the changes from the benthic polyp-form to the pelagic stage in the cannonball jellyfish Stomolophus meleagris, we used fluorometric and spectrophotometric techniques for measuring the activity of trypsin, chymotrypsin, aminopeptidase, amylase, lipase, phosphatase acid, and alkaline. The findings showed that at all stages were able to digest proteins, carbohydrates, and lipids, but the digestive capacity differs between the benthic–pelagic stage and final development of the ephyrae, suggesting a shift in nutrient requirements. The digestive capacity indicated that polyps better assimilate carbohydrates and proteins. During the pelagic stage, a shift in the digestive capacity occurred, where 5-day ephyrae better assimilate proteins, while 15-day-old ephyrae were better with lipids and proteins and juvenile medusae with lipids. This is the first study to describe changes in the digestive capacity of cannonball jellyfish and can help identify ecological features of an important fishing resource with potential aquaculture interest. Different diets for polyps, ephyrae, and juvenile medusae must be considered if the species is cultivated.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Álvarez-González, C. A., M. Cervantes-Trujano, D. Tovar-Ramírez, D. E. Conklin, H. Nolasco, E. Gisbert & R. Piedrahita, 2005. Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiology and Biochemistry 31: 83–93.
Álvarez-Tello, F. J., J. López-Martínez & D. B. Lluch-Cota, 2016. Trophic spectrum and feeding pattern of cannonball jellyfish Stomolophus meleagris (Agassiz, 1862) from central Gulf of California. Journal of the Marine Biological Association of the United Kingdom 96: 1217–1227.
Arai, M. N., 1997. A functional biology of Scyphozoa. Chapman and Hall, London.
Båmstedt, U., 1988. Interspecific, seasonal and diel variations in zooplankton trypsin and amylase activities in Kosterfjorden, western Sweden. Marine Ecology Progress Series 44: 15–24.
Båmstedt, U., J. Lane & M. B. Martinussen, 1999. Bioenergetics of ephyra larvae of the scyphozoan jellyfish Aurelia aurita in relation to temperature and salinity. Marine Biology 135: 89–98.
Biesiot, P. M., 1986. Changes in midgut gland morphology and digestive enzyme activities associated with development in early stages of the American lobster. Doctoral thesis. Woods Hole Oceanographic Institution.
Biesiot, P. M. & J. M. Capuzzo, 1990. Changes in digestive enzyme activities during early development of the American lobster Homarus americanus Milne Edwards. Journal of Experimental Marine Biology and Ecology 136: 107–122.
Bodansky, M. & W. C. Rose, 1922. Comparative studies of digestion. American Journal of Physiology 62: 473–481.
Boucher, J., A. Laurec, J. F. Samain & S. L. Smith, 1975. Etude de la nutrition, du régime et du rythme alimentaire du zooplancton dans les conditions naturelles, par la mesure des activités enzymatiques digestives. Proceedings of the 10th European Symposium on Marine Biology 2: 85–100.
Bradford, M. M., 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.
Calder, D. R., 1982. Life history of the cannonball jellyfish, Stomolophus meleagris L. Agassiz, 1860 (Scyphozoa, Rhizostomida). Biological Bulletin 162: 149–162.
Cargo, D. G., 1975. Comments on the laboratory culture of Scyphozoa. In Culture of Marine Invertebrate Animals. Plenum Press, New York.
Carvalho-Saucedo, L., J. López-Martínez, F. García- Domínguez, C. Rodríguez-Jaramillo & J. Padilla- Serrato, 2011. Biología reproductiva de la medusa bola de cañón Stomolophus meleagris en la laguna Las Guásimas, Sonora, México. Hidrobiológica 21: 77–88.
Chapman, B. Y. G. & R. L. Pardy, 1972. The movement of glucose and glycine through the tissues of Corymorpha palma torrey (Coelenterata, Hydrozoa). Journal of Experimental Biology 56: 639–645.
Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Marine Biology 124: 399–406.
Dupuis, Y., S. Tardival, Z. Poremska & P. Fournier, 1991. Effect of some alkaline phosphatase inhibitors of intestinal calcium transfer. International Journal of Biochemistry 23: 175–180.
Gómez-Aguirre, S., 1991. Larva éfira y diferenciación de Stomolophus meleagris (Scyphozoa: Rhizostomeae) en plancton de lagunas costeras de Tabasco, México. Anales del Instituto de Biología Universidad Nacional Autónoma de México Serie Zoológica 62: 383–389.
Higgins, J. E., M. D. Ford & J. H. Costello, 2008. Transitions in morphology, nematocyst distribution, fluid motions, and prey capture during development of the scyphomedusa Cyanea capillata. Biological Bulletin 214: 29–41.
Hirche, H. J. & K. Anger, 1987. Digestive enzyme activities during larval development of Hyas araneus (Decapoda, Majidae). Comparative Biochemistry and Physiology Part B 87: 297–302.
Hoeger, U. & T. P. Mommsen, 1984. Hydrolytic enzymes in the two North Sea ctenophores Pleurobranchia pileus and Beroe gracilis. Marine Biology 130: 123–130.
Johnston, D. & J. Freeman, 2005. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. Biological Bulletin 208: 36–46.
Kamiyama, T., 2017. Planktonic ciliates as food for the scyphozoan Aurelia coerulea: feeding and growth responses of ephyra and metephyra stages. Journal of Oceanography 74: 53–63.
Kramp, P., 1961. Synopsis of medusae of the worlds. Journal of the Marine Biological Association of the UK 40: 1–471.
Larson, R. J., 1976. Marine Flora and Fauna of the Northeastern United States. Cnidaria: Scyphozoa. NOAA Technical Report NMFS Circular 397 26 pp.
Larson, R. J., 1991. Diet, prey selection and daily ration of Stomolophus meleagris, a filter-feeding scyphomedusa from the NE Gulf of Mexico. Estuarine, Coastal and Shelf Science 32: 511–525.
Lehninger, A., 1994. Bioquímica, 2nd ed. Ediciones Omega. Barcelona, Spain.
Lemos, D., F. L. García-Carreño, P. Hernández & A. Navarrete del Toro, 2002. Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti. Aquaculture 214: 363–380.
López-Martínez, J. & J. Álvarez-Tello, 2013. The jellyfish fishery in Mexico. Agricultural Sciences 4: 57–61.
Lovett, D. L. & D. L. Felder, 1990. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biological Bulletin 178: 144–159.
Manchenko, G. P. & N. I. Zaslavskaya, 1980. Genetic-variability of hexokinase and leucine aminopeptidase in the scyphozoan medusa Cyanea capillata. Biologiya Morya 6: 65–68.
Maraux, S., D. Louvard & J. Barath, 1973. The aminopeptidase from hog-intestinal brush border. Biochimica et Biophysica Acta-Enzymology 321: 282–295.
Mayzaud, P., 1986. Enzymatic measurements of metabolic processes concerned with respiration and ammonia excretion. The biological chemistry of copepods. Oxford University Press, Oxford.
Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science 52: 575–581.
Moguel, C., M. Mascaró, O. H. Avila-Poveda, C. Caamal-Monsreal, A. Sánchez, C. Pascual & C. Rosas, 2010. Morphological, physiological and behavioral changes during post-hatching development of Octopus maya (Mollusca: Cephalopoda) with special focus on the digestive system. Aquatic Biology 9: 35–48.
Nagata, R. M., A. C. Morandini, S. P. Colin, A. E. Migotto & J. H. Costello, 2016. Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna. Marine Ecology Progress Series 557: 145–159.
Ohtsuki, T., 1930. Digestive enzymes of some marine animals. Zoological Magazine 42: 411–421. (In Japanese).
Omori, M., 1978. Zooplankton fisheries of the world: a review. Marine Biology 48: 199–205.
Östman, C., 1997. Abundance, feeding behaviour and nematocysts of scyphopolyps (Cnidaria) and nematocysts in their predator, the nudibranch Coryphella verrucosa (Mollusca). Hydrobiologia 355: 21–28.
Padilla-Serrato, J. G., J. López-Martínez, A. Acevedo-Cervantes, E. Alcántara-Razo & C. H. Rábago-Quiroz, 2013. Feeding of the scyphomedusa Stomolophus meleagris in the coastal lagoon Las Guásimas, northwest Mexico. Hidrobiológica 23: 218–226.
Perrin, A., E. Le Bihan & N. Koueta, 2004. Experimental study of enriched frozen diet on digestive enzymes and growth of juvenile cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda). Journal of Experimental Marine Biology and Ecology 311: 267–285.
Purcell, J. E., W. M. Graham & H. Dumont, 2001. Jellyfish blooms: ecosystem and societal importance Developments in Hydrobiology. Kluwer Academic Press, Dordrecht.
Rotllant, G., F. J. Moyano, M. Andrés, M. Díaz, A. Estévez & E. Gisbert, 2008. Evaluation of fluorogenic substrates in the assessment of digestive enzymes in a decapod crustacean Maja brachydactyla larvae. Aquaculture 282: 90–96.
Samain, J. F., J. Moal, J. Y. Daniel, J. R. Le Coz & M. Jezequel, 1980. The digestive enzymes amylase and trypsin during the development of Artemia: effect of food conditions. In Persoone, G., P. Sorgeloos, O. Roels & E. Jaspers (eds), The brine shrimp Artemia, Vol. 2. Universa Press, Wetteren: 427–443.
Shick, J. M., 1975. Uptake and utilization of dissolved glycine by Aurelia aurita scyphistomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. Biological Bulletin 148: 117–140.
Smith, H. G., 1937. Contribution to the anatomy and physiology of Cassiopea frondosa. Papers from Tortugas laboratory of the Carnegie Institution of Washington 31:17–52.
Southward, A. J., 1955. Observations on the ciliary currents of the jellyfish Aurelia aurita L. Journal of the Marine Biological Association of the UK 34: 201–216.
Stewart, B. C. & S. Lakshmanan, 1975. Some properties of the acid phosphatase and the alkaline phosphatase of the summer jellyfish of the chesapeake bay, Chrysaora quinquecirrha desor. Comparative Biochemistry and Physiology Part A 50: 319–326.
Toledo-Cuevas, E. M., F. J. Moyano, D. Tovar-Ramírez, C. A. Strüssmann, C. A. Álvarez-González, C. C. Martínez-Chávez & C. A. Martínez-Palacios, 2011. Development of digestive biochemistry in the initial stages of three cultured Atherinopsids. Aquaculture Research 42: 776–786.
Van Praët, M., 1976. Acid phosphatase activities in Actinia equina L. and Cereus pedunculatus P. Bulletin de la Societé zoologique de France 101: 367–376.
Van Wormhoudt, A. & D. Sellos, 1980. Aspects biochimiques de la croissance: acides nucléiques et enzymes digestives chez Palaemon serratus (Crustacea Natantia). Oceanologica Acta 3: 97–105.
Vega-Villasante, F., H. Nolasco & R. Civera, 1993. The digestive enzymes of the Pacific brown shrimp Penaeus californiensis. 1. Properties of amylase activity in the digestive tract. Comparative Biochemistry and Physiology Part B 106: 547–550.
Villanueva, R., N. Koueta, J. Riba & E. Boucaud-Camou, 2002. Growth and proteolytic activity of Octopus vulgaris paralarvae with different food rations during first feeding, using Artemia nauplii and compound diets. Aquaculture 205: 269–286.
Acknowledgements
The authors are grateful to Patricia Hinojosa Baltazar for enzyme analysis; Mónica Reza for maintenance and separation of organisms; Jorge Angulo for field assistance; Enrique Morales-Bojórquez and Emigdio Marin-Enriquez for statistics and R programming at CIBNOR. M.G.V. is a recipient of a fellowship from CONACYT, Mexico (Grant 376855).
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling editor: Juan Carlos Molinero
Rights and permissions
About this article
Cite this article
González-Valdovinos, M., Ocampo, L. & Tovar-Ramírez, D. Evaluation of digestive capacity in the polyp, ephyrae, and medusae stages of the cannonball jellyfish Stomolophus meleagris. Hydrobiologia 828, 259–269 (2019). https://doi.org/10.1007/s10750-018-3817-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-018-3817-3