From shallow to deep divergences: mixed messages from Amazon Basin cichlids

Abstract

Cichlids are a conspicuous component of Amazonian ichthyofauna, filling a wide range of niches. Yet taxonomy of many groups is still poorly known in the Amazon, and most of the yet-to-be discovered species are concentrated there. We analyzed 230 individuals sampled from six major Amazonian River Basins representing 56 morpho-species, 34 nominal and 22 undescribed species in 18 cichlid genera. We used four different single-locus species-discovery (SLSD) methods, delimiting between 53 (mPTP) and 57 (GMYC) species/lineages. When detected, species/lineages are hierarchically geographically structured. Many groups such as the Geophaginae and the Cichlinae have recently diversified, and species of genera such as Cichla and Symphysodon hybridize or have a history of hybridization; thus, these species will not be detected by SLSD methods. At the same time, for example, the genera Apistogramma and Biotodoma harbor cryptic species. For all these reasons, species/lineage diversity of Amazonian cichlids is significantly underestimated. The diversity of Amazonian cichlids is particularly remarkable given that the 570 species of Neotropical cichlids, many of which are from the Amazon Basin, are found in just 1.7% of the freshwater aquatic habitat in which the ~ 2,000 species of the East African rift lake cichlids evolved.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Agostinho, Â. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.

    CAS  Article  Google Scholar 

  2. Akama, A., 2017. Impacts of the hydroelectric power generation over the fish fauna of the Tocantins River, Brazil: Marabá Dam, the final blow. Oecologia Australis 21: 222–231.

    Article  Google Scholar 

  3. Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Amado, M. V., T. Hrbek & I. P. Farias, 2011. A molecular perspective on systematics, taxonomy and classification Amazonian discus fishes of the genus Symphysodon. International Journal of Evolutionary Biology 2011: 360654.

    PubMed  PubMed Central  Article  Google Scholar 

  5. April, J., R. L. Mayden, R. H. Hanner & L. Bernatchez, 2011. Genetic calibration of species diversity among North America’s freshwater fishes. Proceedings of the National Academy of Sciences of the United States of America 108: 10602–10607.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Benzaquem, D. C., C. Oliveira, J. S. da Batista, J. Zuanon & J. I. R. Porto, 2015. DNA barcoding in pencilfishes (Lebiasinidae: Nannostomus) reveals cryptic diversity across the Brazilian Amazon. PLoS ONE 10: e0112217.

    PubMed  PubMed Central  Article  Google Scholar 

  7. Bleher, H., K. N. Stölting, W. Salzburger & A. Meyer, 2007. Revision of the genus Symphysodon Heckel, 1840 (Teleostei: Perciformes: Cichlidae) based on molecular and morphological characters. Aqua, Journal of Ichthyology and Aquatic Biology 12: 133–174.

    Google Scholar 

  8. Bouckaert, R. R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, A. Rambaut & A. J. Drummond, 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.

    PubMed  PubMed Central  Article  Google Scholar 

  9. Brown, S. D. J., R. A. Collins, S. Boyer, M.-C. Lefort, J. Malumbres-Olarte, C. J. Vink & R. H. Cruickshank, 2012. SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12: 562–565.

    PubMed  Article  Google Scholar 

  10. Burress, E. D., L. Piálek, J. R. Casciotta, A. Almirón, M. Tan, J. W. Armbruster & O. Říčan, 2018. Island- and lake-like parallel adaptive radiations replicated in rivers. Proceedings. Biological Sciences 285: 20171762.

    PubMed  PubMed Central  Article  Google Scholar 

  11. Castello, L. & M. N. Macedo, 2016. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.

    PubMed  Article  Google Scholar 

  12. Castello, L., D. G. McGrath, L. L. Hess, M. T. Coe, P. A. Lefebvre, P. Petry, M. N. Macedo, V. F. Renó & C. C. Arantes, 2013. The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6: 217–229.

    Article  Google Scholar 

  13. Castro Paz, F. P., J. S. da Batista & J. I. R. Porto, 2014. DNA barcodes of rosy tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon Basin. PLoS ONE 9: e98603.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Clausen, R. & R. York, 2008. Global biodiversity decline of marine and freshwater fish: a cross-national analysis of economic, demographic, and ecological influences. Social Science Research 37: 1310–1320.

    Article  Google Scholar 

  15. Colatreli, O. P., N. V. Meliciano, D. Toffoli, I. P. Farias & T. Hrbek, 2012. Deep phylogenetic divergence and lack of taxonomic concordance in species of Astronotus (Cichlidae). International Journal of Evolutionary Biology 2012: 915265.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. de Carvalho, D. C., D. A. A. Oliveira, P. S. Pompeu, C. G. Leal, C. Oliveira & R. Hanner, 2011. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River Basin. Mitochondrial DNA 22(Suppl 1): 80–86.

    PubMed  Article  Google Scholar 

  18. de Queiroz, K., 2007. Species concepts and species delimitation. Systematic Biology 56: 879–886.

    PubMed  Article  Google Scholar 

  19. Drummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thierer & A. C. Wilson, 2014. Geneious v6.1.8. Biomatters, Inc., Auckland [available on internet at http://www.geneious.com/].

  20. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Article  Google Scholar 

  21. Eschmeyer, W. N., 1998. Catalog of Fishes. California Academy of Sciences Press, San Francisco.

    Google Scholar 

  22. Eschmeyer, W. N. & J. D. Fong, 2018. Species by family/subfamily. CAS: Catalog of Fishes. [available on internet at http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp].

  23. Farias, I. P. & T. Hrbek, 2008. Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon Basin. Molecular Phylogenetics and Evolution 49: 32–43.

    CAS  PubMed  Article  Google Scholar 

  24. Farias, I. P., J. P. Torrico, C. García-Dávila, M. C. F. da Santos, T. Hrbek & J.-F. Renno, 2010. Are rapids a barrier for floodplain fishes of the Amazon Basin? A demographic study of the keystone floodplain species Colossoma macropomum (Teleostei: Characiformes). Molecular Phylogenetics and Evolution 56: 1129–1135.

    PubMed  Article  Google Scholar 

  25. Finer, M. & C. N. Jenkins, 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes–Amazon connectivity. PLoS ONE 7: e35126.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Henriques, J. M., G. J. C. Silva, F. Y. Ashikaga, R. Hanner, F. Foresti & C. Oliveira, 2015. Use of DNA barcode in the identification of fish species from Ribeira de Iguape Basin and coastal rivers from São Paulo State (Brazil). DNA Barcodes 3: 118–128.

    Article  Google Scholar 

  28. Hoorn, C., F. P. Wesselingh, H. ter Steege, M. A. Bermudez, A. Mora, J. Sevink, I. Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. G. Lundberg, T. Stadler, T. Särkinen & A. Antonelli, 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.

    CAS  PubMed  Article  Google Scholar 

  29. Hrbek, T., N. V. Meliciano, J. Zuanon & I. P. Farias, 2018. Remarkable geographic structuring of rheophilic fishes of the lower Araguaia River. Frontiers in Genetics 9: 295.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Hubert, N. & J.-F. Renno, 2006. Historical biogeography of South American freshwater fishes. Journal of Biogeography 33: 1414–1436.

    Article  Google Scholar 

  31. Hubert, N., F. Duponchelle, J. Nuñes, C. Garcia Davila, D. Pauly & J.-F. Renno, 2007. Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implications for the diversification of the Neotropical ichthyofauna. Molecular Ecology 16: 2115–2136.

    CAS  PubMed  Article  Google Scholar 

  32. Hudson, R. R. & J. A. Coyne, 2002. Mathematical consequences of the genealogical species concept. Evolution 56: 1557–1565.

    PubMed  Article  Google Scholar 

  33. International Energy Agency, 2013. World Energy Resources – 2013 Survey. International Energy Agency, Paris [available on internet at https://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf].

  34. Kapli, P., S. Lutteropp, J. Zhang, K. Kobert, P. Pavlidis, A. Stamatakis & T. Flouri, 2017. Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33: 1630–1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Katoh, K. & D. M. Standley, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Kullander, S. O., 2003. Family Cichlidae. In Reis, R. E., S. O. Kullander & C. J. Ferraris (eds), Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre: 605–654.

    Google Scholar 

  37. Kullander, S. O. & E. J. G. Ferreira, 2006. A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae). Ichthyological Exploration of Freshwaters 17: 289–398.

    Google Scholar 

  38. Latrubesse, E. M., E. Y. Arima, T. Dunne, E. Park, V. R. Baker, F. M. D’Horta, C. Wight, F. Wittmann, J. Zuanon, P. A. Baker, C. C. Ribas, R. B. Norgaard, N. Filizola, A. Ansar, B. Flyvbjerg & J. C. Stevaux, 2017. Damming the rivers of the Amazon Basin. Nature 546: 363–369.

    CAS  PubMed  Article  Google Scholar 

  39. Lees, A. C., C. A. Peres, P. M. Fearnside, M. Schneider & J. A. S. Zuanon, 2016. Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation 25: 451–466.

    Article  Google Scholar 

  40. Machado, V. N., R. A. Collins, R. P. Ota, M. C. Andrade, I. P. Farias & T. Hrbek, 2018. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Scientific Reports 8: 8387.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Markert, J. A., R. C. Schelly & M. L. J. Stiassny, 2010. Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids. BMC Evolutionary Biology 10: 149.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Moura, R. L., G. M. Amado-Filho, F. C. Moraes, P. S. Brasileiro, P. S. Salomon, M. M. Mahiques, A. C. Bastos, M. G. Almeida, J. M. Silva, B. F. Araujo, F. P. Brito, T. P. Rangel, B. C. V. Oliveira, R. G. Bahia, R. P. Paranhos, R. J. S. Dias, E. Siegle, A. G. Figueiredo, R. C. Pereira, C. V. Leal, E. Hajdu, N. E. Asp, G. B. Gregoracci, S. Neumann-Leitao, P. L. Yager, R. B. Francini-Filho, A. Froes, M. Campeao, B. S. Silva, A. P. B. Moreira, L. Oliveira, A. C. Soares, L. Araujo, N. L. Oliveira, J. B. Teixeira, R. A. B. Valle, C. Thompson, C. E. Rezende & F. L. Thompson, 2016. An extensive reef system at the Amazon River mouth. Science Advances 2: e1501252.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Pelicice, F. M., V. M. Azevedo-Santos, J. R. S. Vitule, M. L. Orsi, D. P. Lima Junior, A. L. B. Magalhães, P. S. Pompeu, M. Petrere & Â. A. Agostinho, 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries 18: 1119–1133.

    Article  Google Scholar 

  45. Pereira, L. H. G., G. M. G. Maia, R. Hanner, F. Foresti & C. Oliveira, 2011. DNA barcodes discriminate freshwater fishes from the Paraíba do Sul River Basin, São Paulo, Brazil. Mitochondrial DNA 22(Suppl 1): 71–79.

    CAS  PubMed  Article  Google Scholar 

  46. Pereira, L. H., R. H. Hanner, F. Foresti & C. Oliveira, 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics 14: 20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Pérez-Miranda, F., O. Mejía, E. Soto-Galera, H. Espinosa-Pérez, L. Piálek & O. Říčan, 2018. Phylogeny and species diversity of the genus Herichthys (Teleostei: Cichlidae). Journal of Zoological Systematics and Evolutionary Research 56: 223–247.

    Article  Google Scholar 

  48. Piálek, L., O. Říčan, J. R. Casciotta, A. Almirón & J. Zrzavý, 2012. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Molecular Phylogenetics and Evolution 62: 46–61.

    PubMed  Article  Google Scholar 

  49. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.r-project.org/].

  50. Rambaut, A., A. J. Drummond & M. A. Suchard, 2013. Tracer v1.6.

  51. Ready, J. S., E. J. G. Ferreira & S. O. Kullander, 2006. Discus fishes: mitochondrial DNA evidence for a phylogeographic barrier in the Amazonian genus Symphysodon (Teleostei: Cichlidae). Journal of Fish Biology 69: 200–211.

    CAS  Article  Google Scholar 

  52. Reid, N. M. & B. C. Carstens, 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12: 196.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Reis, R. E., S. O. Kullander & C. J. Ferraris Jr., 2003. Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre.

    Google Scholar 

  54. Reis, R. E., J. S. Albert, F. Di Dario, M. M. Mincarone, P. Petry & L. A. Rocha, 2016. Fish biodiversity and conservation in South America. Journal of Fish Biology 89: 12–47.

    CAS  PubMed  Article  Google Scholar 

  55. Ross, H. A., 2014. The incidence of species-level paraphyly in animals: a re-assessment. Molecular Phylogenetics and Evolution 76: 10–17.

    PubMed  Article  Google Scholar 

  56. Rossini, B. C., C. A. M. Oliveira, F. A. G. de Melo, V. A. de Bertaco, J. M. D. de Astarloa, J. J. Rosso, F. Foresti & C. Oliveira, 2016. Highlighting Astyanax species diversity through DNA barcoding. PLoS ONE 11: e0167203.

    PubMed  PubMed Central  Article  Google Scholar 

  57. Roxo, F. F., N. K. Lujan, V. A. Tagliacollo, B. T. Waltz, G. S. C. Silva, C. Oliveira & J. S. Albert, 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 12: e0178240.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Sambrook, J. & D. Russell, 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  59. Schliep, K. P., 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27: 592–593.

    CAS  PubMed  Article  Google Scholar 

  60. Shiklomanov, I. A., 1993. World fresh water resources. In Gleick, P. H. (ed.), Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press, Oxford: 13–24.

    Google Scholar 

  61. Sioli, H., 1984. The Amazon and its main affluents: hydrography, morphology of the river courses and river types. In Sioli, H. (ed.), The Amazon. Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin. Springer, New York: 127–165.

    Google Scholar 

  62. Sivasundar, A., E. Bermingham & G. Ortí, 2001. Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers. Molecular Ecology 10: 407–417.

    CAS  PubMed  Article  Google Scholar 

  63. Tougard, C., C. R. García Dávila, U. Römer, F. Duponchelle, F. Cerqueira, E. Paradis, B. Guinand, C. Angulo Chávez, V. Salas, S. Quérouil, S. Sirvas & J.-F. Renno, 2017. Tempo and rates of diversification in the South American cichlid genus Apistogramma (Teleostei: Perciformes: Cichlidae). PLoS ONE 12: e0182618.

    PubMed  PubMed Central  Article  Google Scholar 

  64. Varella, H. R., J. Zuanon, S. O. Kullander & H. López-Fernández, 2016. Teleocichla preta, a new species of cichlid from the Rio Xingu Basin in Brazil (Teleostei: Cichlidae). Journal of Fish Biology 89: 1551–1569.

    CAS  PubMed  Article  Google Scholar 

  65. Venticinque, E. M., B. R. Forsberg, B. R. Barthen, P. Petry, L. Hess, A. Mercado, C. Canãs, M. Montoya, C. Durigan & M. Goulding, 2016. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth System Science Data Discussions. https://doi.org/10.5194/essd-8-651-2016.

    Article  Google Scholar 

  66. Werle, E., C. Schneider, M. Renner, M. Völker & W. Fiehn, 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22: 4354–4355.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Willis, S. C., 2017. One species or four? Yes!…and, no. Or, arbitrary assignment of lineages to species obscures the diversification processes of Neotropical fishes. PLoS ONE 12: e0172349.

    PubMed  PubMed Central  Article  Google Scholar 

  68. Willis, S. C., M. S. Nunes, C. G. Montaña, I. P. Farias & N. R. Lovejoy, 2007. Systematics, biogeography, and evolution of the Neotropical peacock basses Cichla (Perciformes: Cichlidae). Molecular Phylogenetics and Evolution 44: 291–307.

    CAS  PubMed  Article  Google Scholar 

  69. Willis, S. C., H. López-Fernández, C. G. Montaña, I. P. Farias & G. Ortí, 2012a. Species-level phylogeny of “Satan’s perches” based on discordant gene trees (Teleostei: Cichlidae: Satanoperca Günther 1862). Molecular Phylogenetics and Evolution 63: 798–808.

    PubMed  Article  Google Scholar 

  70. Willis, S. C., J. Macrander, I. P. Farias & G. Ortí, 2012b. Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus Cichla) using multi-locus data. BMC Evolutionary Biology 12: 96.

    PubMed  PubMed Central  Article  Google Scholar 

  71. Willis, S. C., I. P. Farias & G. Ortí, 2014. Testing mitochondrial capture and deep coalescence in Amazonian cichlid fishes (Cichlidae: Cichla). Evolution 68: 256–268.

    CAS  PubMed  Article  Google Scholar 

  72. Yu, G., D. K. Smith, H. Zhu, Y. Guan & T. T.-Y. Lam, 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8: 28–36.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Lúcia Py-Daniel, Jansen Zuanon and the Ichthyology Group (Rafaela Ota, Madoka Ito, Isabela Soares, Douglas Bastos) at INPA for help with specimen identification. This study formed a portion of APCC’s Masters Dissertation in the Genetics, Conservation and Evolutionary Biology Graduate Program INPA/UFAM. Financial support was provided by CNPq Grant No. 575603/2008-9 and CNPq/SISBIOTA-BioPHAM (Grant No. CNPq 563348/2010) to IPF, and CNPq Grant No. 483155/2010-1 and 490682/2010 to TH. APCC received a Graduate Student Fellowship from CNPq, RAC a “science without borders” Postdoctoral Fellowship CNPq Grant No. 400813/2012-2, JGM a COLCIENCIAS Graduate Student Fellowship, and IPF and TH a CNPq Research Productivity Fellowships. Permission to carry out the fieldwork and the collection of tissue samples was granted by IBAMA (License No. 11325-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomas Hrbek.

Additional information

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T. Takahashi / Advances in Cichlid Research III: Behavior, Ecology and Evolutionary Biology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CSV 2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A.P.C., Collins, R.A., Martínez, J.G. et al. From shallow to deep divergences: mixed messages from Amazon Basin cichlids. Hydrobiologia 832, 317–329 (2019). https://doi.org/10.1007/s10750-018-3790-x

Download citation

Keywords

  • Cichlidae
  • Cryptic diversity
  • Cytochrome oxidase subunit I
  • COI