Recent sympatric speciation involving habitat-associated nuptial colour polymorphism in a crater lake cichlid

Abstract

Even though the idea that modes of speciation other than allopatric speciation are possible in nature is now widespread, compelling examples of ecological speciation in sympatry remain rare. We studied an undescribed radiation of haplochromine cichlids in a young crater lake in western Uganda, and in the small river that is nearby but has currently no known surface connection to the lake. We describe two different modes of speciation that occurred in this cichlid lineage within the past 1,500–10,000 years. Not constrained by gene flow, allopatric divergence between river and lake cichlids affects many different morphological traits as well as nuptial colouration—muted in the river, but intensified and polymorphic in lake cichlids—and neutral genetic differentiation. More surprisingly, we demonstrate a case for sympatric speciation within the small lake that is associated with dramatic differences in male breeding colouration (yellow with bright red-chest versus bright blue) and subtle differences in microhabitat, feeding regime and morphology. Reproductive isolation by assortative mating is suggested by significant differentiation between yellow and blue males in neutral markers of gene flow despite complete sympatry. We hypothesize speciation is mediated by divergent selection on sexual signalling between microhabitats.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allender, C. J., O. Seehausen, M. E. Knight, G. F. Turner & N. Maclean, 2003. Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration. Proceedings of the National Academy of Sciences of the United States of America 100: 14074–14079.

    CAS  Article  Google Scholar 

  2. Barel, C. D. N., M. van Oijen, F. Witte & E. Witte-Maas, 1977. An introduction to taxonomy and morphology of haplochromine Cichlidae from Lake Victoria. Netherlands Journal of Zoology 27: 333–389.

    Google Scholar 

  3. Barluenga, M., K. N. Stölting, W. Salzburger, M. Muschick & A. Meyer, 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439: 719–723.

    CAS  Article  Google Scholar 

  4. Bolnick, D. I. & B. M. Fitzpatrick, 2007. Sympatric speciation: models and empirical evidence. Annual Review of Ecology Evolution and Systematics 38: 459–487.

    Article  Google Scholar 

  5. Boughman, J. W., 2001. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411: 944–948.

    CAS  Article  Google Scholar 

  6. Boughman, J. W., 2002. How sensory drive can promote speciation. Trends in Ecology & Evolution 17: 571–577.

    Article  Google Scholar 

  7. Butlin, R. K., J. Galindo & J. W. Grahame, 2008. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 363: 2997–3007.

    Article  Google Scholar 

  8. Carleton, K. L. & T. D. Kocher, 2001. Cone opsin genes of african cichlid fishes: tuning spectral sensitivity by differential gene expression. Molecular Biology and Evolution 18: 1540–1550.

    CAS  Article  Google Scholar 

  9. Carleton, K. L., J. W. L. Parry, J. K. Bowmaker, D. M. Hunt & O. Seehausen, 2005. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Molecular Ecology 14: 4341–4353.

    CAS  Article  Google Scholar 

  10. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

    CAS  Article  Google Scholar 

  11. Coyne, J. A. & H. A. Orr, 2004. Speciation. Sinauer Associates, Sunderland.

    Google Scholar 

  12. Crow, K. D., H. Munehara & G. Bernardi, 2010. Sympatric speciation in a genus of marine reef fishes. Molecular Ecology 19: 2089–2105.

    CAS  Article  Google Scholar 

  13. Dijkstra, P. D., O. Seehausen, M. E. R. Pierotti & T. G. G. Groothuis, 2007. Male-male competition and speciation: aggression bias towards differently coloured rivals varies between stages of speciation in a Lake Victoria cichlid species complex. Journal of Evolutionary Biology 20: 496–502.

    CAS  Article  Google Scholar 

  14. Dijkstra, P. D., J. Lindstroem, N. B. Metcalfe, C. K. Hemelrijk, M. Brendel, O. Seehausen & T. G. G. Groothuis, 2010. Frequency-dependent social dominance in a color polymorphic cichlid fish. Evolution 64: 2797–2807.

    PubMed  Google Scholar 

  15. Elmer, K. R., T. K. Lehtonen, A. F. Kautt, C. Harrod & A. Meyer, 2010. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biology 8: 60.

    Article  Google Scholar 

  16. Endler, J. A. & A. L. Basolo, 1998. Sensory ecology, receiver biases and sexual selection. Trends in Ecology & Evolution 13: 415–420.

    CAS  Article  Google Scholar 

  17. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  Google Scholar 

  18. Feder, J. L., S. M. Flaxman, S. P. Egan, A. A. Comeault & P. Nosil, 2013. Geographic mode of speciation and genomic divergence. Annual Review of Ecology Evolution and Systematics 44: 73–97.

    Article  Google Scholar 

  19. Foll, M. & O. Gaggiotti, 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.

    Article  Google Scholar 

  20. Futuyma, D. J. & G. C. Mayer, 1980. Non-allopatric speciation in animals. Systematic Biology 29: 254–271.

    Article  Google Scholar 

  21. Goldschmidt, T., F. Witte & J. de Visser, 1990. Ecological segregation in zooplanktivorous Haplochromine species (Pisces: Cichlidae) from Lake Victoria. Oikos 58: 343–355.

    Article  Google Scholar 

  22. Goudet, J., 2002. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html.

  23. Hall, T., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  24. Hyslop, E. J., 1980. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology 17: 411–429.

    Article  Google Scholar 

  25. Kautt, A. F., G. Machado-Schiaffino, J. Torres-Dowdall & A. Meyer, 2016a. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecology and Evolution 6: 5342–5357.

    Article  Google Scholar 

  26. Kautt, A. F., G. Machado-Schiaffino & A. Meyer, 2016b. Multispecies outcomes of sympatric speciation after admixture with the source population in two radiations of Nicaraguan crater lake Cichlids. Plos Genetics 12: e1006157.

    Article  Google Scholar 

  27. Kisel, Y. & T. G. Barraclough, 2010. Speciation has a spatial scale that depends on levels of gene flow. American Naturalist 175: 316–334.

    Article  Google Scholar 

  28. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.

    CAS  Article  Google Scholar 

  29. Kocher, T. D., J. A. Conroy, K. R. McKaye, J. R. Stauffer & S. F. Lockwood, 1995. Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Molecular Phylogenetics and Evolution 4: 420–432.

    CAS  Article  Google Scholar 

  30. Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Pääbo, F. X. Villablanca & A. C. Wilson, 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86: 6196–6200.

    CAS  Article  Google Scholar 

  31. Maan, M. E. & O. Seehausen, 2011. Ecology, sexual selection and speciation. Ecology Letters 14: 591–602.

    Article  Google Scholar 

  32. Machado-Schiaffino, G., A. F. Kautt, H. Kusche & A. Meyer, 2015. Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish. BMC Evolutionary Biology 15: 9.

    Article  Google Scholar 

  33. Magalhaes, I. S. & O. Seehausen, 2010. Genetics of male nuptial colour divergence between sympatric sister species of a Lake Victoria cichlid fish. Journal of Evolutionary Biology 23: 914–924.

    CAS  Article  Google Scholar 

  34. Magalhaes, I. S., S. Mwaiko & O. Seehausen, 2010. Sympatric colour polymorphisms associated with nonrandom gene flow in cichlid fish of Lake Victoria. Molecular Ecology 19: 3285–3300.

    CAS  Article  Google Scholar 

  35. Martin, C. H., J. S. Cutler, J. P. Friel, C. D. Touokong, G. Coop & P. C. Wainwright, 2015. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 69: 1406–1422.

    Article  Google Scholar 

  36. Malinsky, M., R. J. Challis, A. M. Tyers, S. Schiffels, Y. Terai, B. P. Ngatunga, E. A. Miska, R. Durbin, M. J. Genner & G. F. Turner, 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350: 1493–1498.

    CAS  Article  Google Scholar 

  37. Meier, J. I., D. A. Marques, S. Mwaiko, C. E. Wagner, L. Excoffier & O. Seehausen, 2017a. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Communications 8: 14363.

    CAS  Article  Google Scholar 

  38. Meier, J. I., V. C. Sousa, D. A. Marques, O. M. Selz, C. E. Wagner, L. Excoffier & O. Seehausen, 2017b. Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Molecular Ecology 26: 123–141.

    CAS  Article  Google Scholar 

  39. Mills, K., 2009. Ugandan crater lakes: limnology, palaeolimnology and palaeoenvironmental history. PhD Thesis, Loughborough University, UK.

  40. Moser, F. N., J. C. van Rijssel, S. Mwaiko, J. I. Meier, B. Ngatunga & O. Seehausen, 2018. The onset of ecological diversification 50 years after colonization of a crater lake by haplochromine cichlid fishes. Proceedings of the Royal Society B-Biological Sciences 285: 20180171.

    Article  Google Scholar 

  41. Muschick, M., A. Indermaur & W. Salzburger, 2012. Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology 22: 2362–2368.

    CAS  Article  Google Scholar 

  42. Nixon, P. H. & G. Hornung, 1973. The carbonatite lavas and tuffs near Fort Portal, Western Uganda. Overseas Geological and Mineral Research 41: 168–179.

    CAS  Google Scholar 

  43. Nosil, P., 2008. Speciation with gene flow could be common. Molecular Ecology 17: 2103–2106.

    Article  Google Scholar 

  44. Nosil, P., 2012. Ecological Speciation. Oxford University Press, Oxford.

    Google Scholar 

  45. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Article  Google Scholar 

  46. Russell, J. M., D. Verschuren & H. Eggermont, 2007. Spatial complexity of “Little Ice Age” climate in East Africa: sedimentary records from two crater lake basins in western Uganda. The Holocene 17: 183–193.

    Article  Google Scholar 

  47. Samonte, I. E., Y. Satta, A. Sato, H. Tichy, N. Takahata & J. Klein, 2007. Gene flow between species of Lake Victoria Haplochromine fishes. Molecular Biology and Evolution 24: 2069–2080.

    CAS  Article  Google Scholar 

  48. Santini, F., M. P. Miglietta & A. Faucci, 2012. Speciation: where are we now? Evolutionary Biology 39: 141–147.

    Article  Google Scholar 

  49. Sato, A., N. Takezaki, H. Tichy, F. Figueroa, W. E. Mayer & J. Klein, 2003. Origin and speciation of haplochromine fishes in East African crater lakes investigated by the analysis of their mtDNA, Mhc Genes, and SINEs. Molecular Biology and Evolution 20: 1448–1462.

    CAS  Article  Google Scholar 

  50. Schliewen, U. K., D. Tautz & S. Pääbo, 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632.

    CAS  Article  Google Scholar 

  51. Schliewen, U., K. Rassmann, M. Markmann, J. Markert, T. Kocher & D. Tautz, 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology 10: 1471–1488.

    CAS  Article  Google Scholar 

  52. Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society B-Biological Sciences 273: 1987–1998.

    Article  Google Scholar 

  53. Seehausen, O. & D. Schluter, 2004. Male-male competition and nuptial-colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proceedings of the Royal Society B-Biological Sciences 271: 1345–1353.

    Article  Google Scholar 

  54. Seehausen, O. & J. J. M. van Alphen, 1999. Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecology Letters 2: 262–271.

    Article  Google Scholar 

  55. Seehausen, O., J. J. M. Van Alpen & F. Witte, 1999. Can ancient colour polymorphisms explain why some cichlid lineages speciate rapidly under disruptive sexual selection? Belgian Journal of Zoology 129: 43–60.

    Google Scholar 

  56. Seehausen, O., F. Witte, J. J. M. van Alphen & N. Bouton, 1998. Direct mate choice maintains diversity among sympatric cichlids in Lake Victoria. Journal of Fish Biology 53: 37–55.

    Article  Google Scholar 

  57. Seehausen, O., R. K. Butlin, I. Keller, C. E. Wagner, J. W. Boughman, P. A. Hohenlohe, C. L. Peichel, G.-P. Saetre, C. Bank, Å. Brännström, A. Brelsford, C. S. Clarkson, F. Eroukhmanoff, J. L. Feder, M. C. Fischer, A. D. Foote, P. Franchini, C. D. Jiggins, F. C. Jones, A. K. Lindholm, K. Lucek, M. E. Maan, D. A. Marques, S. H. Martin, B. Matthews, J. I. Meier, M. Möst, M. W. Nachman, E. Nonaka, D. J. Rennison, J. Schwarzer, E. T. Watson, A. M. Westram & A. Widmer, 2014. Genomics and the origin of species. Nature Reviews Genetics 15: 176–192.

    CAS  Article  Google Scholar 

  58. Seehausen, O., Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mrosso, R. Miyagi, I. van der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, H. Imai & N. Okada, 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620–626.

    CAS  Article  Google Scholar 

  59. Selz, O. M., R. Thommen, M. E. R. Pierotti, J. M. Anaya-Rojas & O. Seehausen, 2016. Differences in male coloration are predicted by divergent sexual selection between populations of a cichlid fish. Proceedings of the Royal Society B-Biological Sciences. https://doi.org/10.1098/rspb.2016.0172.

    Article  PubMed Central  Google Scholar 

  60. Sugawara, T., Y. Terai & N. Okada, 2002. Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes Cichlid fishes. Molecular Biology and Evolution 19: 1807–1811.

    CAS  Article  Google Scholar 

  61. Terai, Y., O. Seehausen, T. Sasaki, K. Takahashi, S. Mizoiri, T. Sugawara, T. Sato, M. Watanabe, N. Konijnendijk, H. D. J. Mrosso, H. Tachida, H. Imai, Y. Shichida & N. Okada, 2006. Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biology 4: e433.

    Article  Google Scholar 

  62. Terai, Y., W. E. Mayer, J. Klein, H. Tichy & N. Okada, 2002. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America 99: 15501–15506.

    CAS  Article  Google Scholar 

  63. van Doorn, G. S., U. Dieckmann & F. J. Weissing, 2004. Sympatric speciation by sexual selection: a critical reevaluation. American Naturalist 163: 709–725.

    Article  Google Scholar 

  64. van Doorn, G. S., P. Edelaar & F. J. Weissing, 2009. On the origin of species by natural and sexual selection. Science 326: 1704–1707.

    Article  Google Scholar 

  65. van Rijssel, J. C., F. N. Moser, D. Frei & O. Seehausen, 2018. Prevalence of disruptive selection predicts extent of species differentiation in Lake Victoria cichlids. Proceedings of the Royal Society B-Biological Sciences 285: 20172630.

    Article  Google Scholar 

  66. van Oosterhout, C., W. F. Hutchinson, D. Wills & P. Shipley, 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.

    Article  Google Scholar 

  67. Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. Origin of the superflock of Cichlid fishes from Lake Victoria, East Africa. Science 300: 325–329.

    CAS  Article  Google Scholar 

  68. Vinogradov, V. I., A. A. Krasnov, V. N. Kuleshov & L. D. Sulerzhitskiy, 1978. 13C/12C, 18O/16O, and 14C concentrations in the carbonatites of the Kalyango Volcano (East Africa). Izvestiya Akademii Nauk, Seriya Geologicheskaya 6: 33–41.

    Google Scholar 

  69. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366–370.

    CAS  Article  Google Scholar 

  70. Wagner, C. E., L. J. Harmon & O. Seehausen, 2014. Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecology Letters 17: 583–592.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jackson Efitre and the dedicated field assistants of the Kibale Fish Project for help with fieldwork, the students of the Tropical Biology Association Kibale Course of 2003 for help with stomach content analyses, and Rachel Tongue for help with morphometric distances. The genetic lab work was supported by Swiss National Science Foundation Grants 3100A0-118293/1 and 31003A_163338 to OS. Field work conducted by LJC was supported by Funding for this research was provided from the National Science Foundation and the Wildlife Conservation Society. Permission to conduct research in Uganda was acquired from the Uganda National Council for Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ole Seehausen.

Additional information

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T. Takahashi / Advances in Cichlid Research III: Behavior, Ecology and Evolutionary Biology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3180 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lemoine, M., Barluenga, M., Lucek, K. et al. Recent sympatric speciation involving habitat-associated nuptial colour polymorphism in a crater lake cichlid. Hydrobiologia 832, 297–315 (2019). https://doi.org/10.1007/s10750-018-3746-1

Download citation

Keywords

  • Crater lakes
  • Lake Victoria region
  • Sexual selection
  • Microsatellites
  • Cichlidae